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Abstract

Brody 曲線の力学系に対し，情報理論の率歪み理論と平均次元の変分原理を組み合わ
せて，Ruelle 型不等式

rdim(BN , T, d, µ) ≤
∫
BN

ψ dµ, ψ(f) = 2(N + 1)|df |2(0)

を示し，さらに任意の 0 ≤ c < 2(N + 1)ρ(CPN ) に対して等号を達成する C–不変確率測
度 µ を構成する（rdim =

∫
ψ = c）．ここで ρ(CPN ) はエネルギー密度である．これによ

り既知の等式 mdim(BN , T ) = 2(N + 1)ρ(CPN ) は

sup
µ

rdim(BN , T, d, µ) = sup
µ

∫
ψ dµ

という測度論的変分原理として再解釈される．

時間が無かったため，このアブストラクトは私（塚本）の次の論文
Tsukamoto, M. Rate Distortion Dimension of Random Brody Curves. Geom.
Funct. Anal. 35, 915–978 (2025). https://doi.org/10.1007/s00039-025-00709-x

をChatGPT 5 Proに読み込ませて日本語で要約させたものです．私がわずかに修正を加えま
した．残念ながら，私のプロンプトの指示が良くないのか，それともAIの能力がまだ十分で
はないのか，あまり出来が良くありません．ご笑覧いただければ幸いです．
この研究発表にあたり科研費（JP25K06974）の補助を受けました．

主定理の要約
複素平面Cから複素射影空間CPN への 1-リプシッツ正則写像を Brody 曲線と呼ぶ．CPN へ
の Brody 曲線の空間 BN と C の平行移動作用 T を考える．任意の T–不変確率測度 µ に対し

rdim(BN , T, d, µ) ≤
∫
ψ dµ

が成り立ち，しかも任意の 0 ≤ c < 2(N +1)ρ(CPN ) に対し rdim =
∫
ψ = c を満たす µ を具

体的に構成できる．（Ruelle 不等式の Brody 曲線版と等号達成測度の豊富性．）

1 背景と目的
Brody 曲線は C → CPN の 1-Lipschitz 正則写像で，BN はコンパクト距離空間となり C が平
行移動で連続的に作用する．Gromov により mdim(BN , T ) の研究が始まり，mdim(BN , T ) =
2(N +1)ρ(CPN ) が知られている．本論文はこれを測度ごとの 率歪み次元 rdim と局所エネル
ギーに基づく 幾何ポテンシャル ψ で精密化する．
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2 設定と用語
• 計量 d(f, g) = maxz∈[0,1]2 dFS(f(z), g(z))．
• 幾何ポテンシャル ψ(f) = 2(N + 1)|df |2(0)（他の等価な平均化形でも同値）．
• 率歪み関数 R(d, µ, ε) と率歪み次元

rdim = lim sup
ε→0

R(d, µ, ε)

log(1/ε)
.

• 積分 ∫
BN

ψ dµ（µは T 不変確率測度）の上限を ρ(CPN )と書く．

3 主定理
定理 1 (Ruelle 型不等式（原論文 Thm. 2.4）). 任意の T–不変確率測度 µ に対し

rdim(BN , T, d, µ) ≤
∫
BN

ψ dµ.

定理 2 (等号達成測度の構成（原論文 Thm. 2.5）). 任意の 0 ≤ c < 2(N + 1)ρ(CPN ) に対し
て，不変測度 µ が存在し

rdim(BN , T, d, µ) =

∫
BN

ψ dµ = c

を満たす．
以上により

sup
µ

rdim(BN , T, d, µ) = sup
µ

∫
ψ dµ = 2(N + 1)ρ(CPN )

が従う．（mdim(BN , T ) = 2(N + 1)ρ(CPN ) の測度論的再表現．）

4 証明アイデアの骨子
平均次元 with potential の変分原理 連続作用 (X,T ) と連続関数 φ に対し

mdim(X,T, φ) ≤ sup
µ

{
rdim(X,T, d, µ) +

∫
φdµ

}
≤ mdimM (X,T, d, φ).

ここで φ = −ψ をとる．

鍵等式（Brody 版の「圧力 = 0」） 変形理論とカバーリング見積りにより
mdim(BN , T,−ψ) = mdimM (BN , T, d,−ψ) = 0

を示す（原論文 Thm. 6.4）．これを上の変分不等式へ代入して rdim ≤
∫
ψ を得る．Axiom A

力学系における PT (−ϕ) = 0 に対応．

等号達成測度の構成 非退化 Brody 曲線 f の一次変形空間 Hf とその有限次元部分空間 V
（Riemann–Roch による次数下界）を使い，V の球面上一様測度を変形写像で BN に押し出
し，さらに領域平均で T–不変化．Kawabata–Dembo の下界と上の上界を噛み合わせ

rdim(BN , T, d, µ) =

∫
ψ dµ = 2(N + 1)ρ(f)

を得る．スケーリングで任意の c を実現する．
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5 例と補足
例 3 (ランダム級数（原論文 Ex. 2.1）). 十分大きい格子 Λ とパラメータ uλ, w を一様に選び

f(z + w) =
∑
λ∈Λ

uλ
(z + w − λ)3

で定まる確率測度は T–不変となり，「ランダム Brody 曲線」の典型例になる．
例 4 (素朴な等式の破綻（原論文 Ex. 2.3）). 周期軌道上の一様測度では rdim = 0だが ∫

ψ > 0
となり，一般には rdim =

∫
ψ は成り立たない．

補足 5 (Nevanlinnaとの接続（原論文 Rem. 2.6）). Nevanlinna–Shimizu–Ahlfors特性 T (R, f)
の主項係数が ∫

ψ dµ に一致（µ–a.e. f）．解析的量と情報理論的量の対応が得られる．

6 技術ツールの位置づけ
• 率歪み理論：連続時間版の定義・下界（Kawabata–Dembo）．
• 平均次元 with potential の変分原理：mdim, mdimM , rdim を橋渡し．
• 変形理論・グルーイング：非退化化とエネルギー制御により mdimM (BN , T, d,−ψ) = 0
を導く．

いずれも原論文 §§4–6, 8–9 に詳しい．

7 意義と展望
情報理論的量（率歪み次元）を Brody 曲線の力学系に導入し，幾何ポテンシャルの積分で抑
える Ruelle 型不等式と，その等号達成測度の豊富さを示した．平均次元の公式を測度的変分
原理として再統一する．未解決問題として，任意の c ∈ (0, 2(N + 1)ρ(CPN )) に対して エル
ゴード測度で rdim =

∫
ψ = c を達成できるか（原論文 Problem 9.10）．

まとめ（式の一覧）

幾何ポテンシャル ψ(f) = 2(N + 1)|df |2(0).

Ruelle 型不等式 rdim(BN , T, d, µ) ≤
∫
BN

ψ dµ.

等号達成 ∀c ∈ [0, 2(N + 1)ρ(CPN )) ∃µ : rdim =

∫
ψ = c.

測度版変分原理 sup
µ

rdim = sup
µ

∫
ψ dµ = 2(N + 1)ρ(CPN ).
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