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1 序文
コホモロジー的条件から Stein 性，局所 Stein 性を導出する定理は多くある．Serre [44] によ
り，Cn 内の開集合 Dについて，Hk(D,OD)= 0 (1≤ k ≤ n−1)のとき，Dは Steinである．Laufer

[31] により，n 次元 Stein 多様体 X の上の正則分離を仮定した Riemann 領域 (D,π) について，
Hk(D,OD) = 0 (1 ≤ k ≤ n−1) のとき，D は Stein である．Siu [45, Theorem B] により，n 次元
Stein多様体 X の上の Riemann領域 (D,π)について，1≤ k ≤ n−1に対し Hk(D,OD)の代数的次
元が高々可算無限ならば，D は Steinである．
また，他のコホモロジー的条件から Stein 性を導出する研究群があり，Kajiwara–Kazama

[26] により，2 次元 Stein 多様体内の領域 D について，正の次元の複素 Lie 群 G が存在して，
H1(D,OG) = 0ならば，D は Steinである．Mori [36]により，n次元 Stein多様体内の領域 D に
ついて，Hk(D,OD)= 0 (2≤ k ≤ n−1)かつ正の次元の複素 Lie群 G が存在して，H1(D,OG)= 0な
らば，D は Steinである．
さらに，Oka-Grauert の原理による Stein 性の特徴付けに関連する定理が示された．ここ
で，被約解析空間 (X ,OX ) が複素 Lie 群 G に関して Oka-Grauert の原理を満たすとは，標準
写像 H1(X ,OG) → H1(X ,CG) が単射のこと指す (Leiterer [32] もしくは Forstnerič [15] 参照)．
Kajiwara–Nishihara [27]により，2次元 Stein多様体内の領域 D について，正の次元の複素 Lie

群Gが存在して，H1(D,OG)→ H1(D,EG)が準単射ならば，Dは Steinである．Kajiwara [24]によ
り，P2 内の真部分領域 D について，正の次元の複素 Lie群 G が存在して，H1(D,OG)→ H1(D,EG)

が準単射ならば，D は Stein である．さらに，Abe [2, Theorem 8] は，純 n 次元 Stein orbifold

内の領域 D について，Hk(D,OD) = 0（2 ≤ k ≤ n−1) かつ正の次元の複素 Lie 群 G が存在して，
H1(D,OG)→ H1(D,EG)が準単射ならば，D は任意の p ∈ ∂D において局所 Steinであることを証
明した．また，Leiterer [32]により，Stein多様体内の領域 D において，H1(D,OD)= 0かつ任意の
r ∈N に対し GL(r,C) について H1(D,OGL(r,C)) → H1(D,EGL(r,C)) が準単射ならば，D は Steinで
ある．Kajiwara [25]により，Stein多様体 S内の連続な境界をもつ領域 D について，正の次元の
複素 Lie群G が存在して，S内の任意の解析的多重円板 P に対し H1(D∩P,OG)→ H1(D∩P,EG)

が準単射ならば，D は Steinである．
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Oka-Grauertの原理とは別のコホモロジー的条件から Stein性を導出するものもある．Gunning

[20, pp. 122–125]により，被約 Stein空間 (X ,OX )上の任意の正則直線束 L はある Cartier因子
dにより定まると示された．この逆問題に関して次のことが知られている．Abe [1]により，2次
元 Stein多様体内の領域 D について，D 上の任意の正則直線束 Lがある Cartier因子 dにより定
まるなら D は Steinである．さらに，Ballico [10]により，Andreotti–Grauertの意味で weakly

2-convex関数 φ : S →Rによって D = {φ< c}と表される次元 2以上な Stein多様体 S 内の開集合
D について，D 上の任意の正則直線束 Lがある Cartier因子 dにより定まるなら D は Steinであ
る．また，この結果はさらに一般化され，Abe [3]により，純 n次元 Stein orbifold内の開集合 D

で，Hk(D,OD)= 0 (2≤ k ≤ n−1)かつ，D上の位相的自明な正則直線束 Lがある Cartier因子 dに
より定まるなら D は任意の p ∈ ∂D において局所 Steinである. この任意の位相的自明な正則直線
束がある Cartier因子により定まるという条件は，Pic0(D)を位相的自明な正則直線束全体の集合
とすれば，Pic0(D)⊂ Im

(
[·]D : Div(D)→ H1(D, (OredD)∗)

)と表現することができる．
上記のような先行研究を踏まえ，本稿では次の状況における Riemann領域 (D,π)の局所 Stein

性を考察する．Hk(D,OD)= 0 (2≤ k ≤ n−1)を満たす n次元 Stein多様体 S，あるいは，特異点が
離散的な Stein空間 (S,OS)の上の Riemann領域 (D,π)を考え，次の 2条件 (O)もしくは (C)のい
ずれか一方を満たすと仮定する:

(O) ある正の次元の複素 Lie群Gに対して，標準写像 H1(D,OG)→ H1(D,EG)が準単射である．
(C) Pic0(D)⊂ Im

(
[·]D : Div(D)→ H1(D, (OredD)∗)

)．
この仮定の下で，Riemann領域 (D,π)の局所 Stein性がどのように導かれるかを解説する．特に，
Abe–Sugiyama [7]と Sugiyama [49]に基づいた Riemann領域 (D,π)に対する貼り合わせ法を中
心に述べる．この貼り合わせ法はKajiwara–Kazama [26]の論法を拡張したものであり，上記 2つ
の条件 (O)と (C)を並列して取り扱うのは，いずれの場合にも，この貼り合わせ法が有効だからで
ある．
各章の内容は次のとおりである．まず，第 2章では序文で述べたコホモロジー的条件の定義を
整理する．第 3章では Riemann領域とその境界の定義と弱 q-擬凸性，局所 Stein性の定義とその
性質を述べる．第 4章では Riemann領域の貼り合わせ法について解説し，第 5章ではそれを応用
し，条件 (O)を満たす n次元 Stein多様体の上の Riemann領域 (D,π)を考察する．第 6章では条
件 (C)を満たす特異点が離散的な Stein空間の上の Riemann領域 (D,π)を考察する．第 7章では，
Cousin-I性に注目して関連するいくつかの結果を述べる．

2 準備
考察する解析空間は常に第 2可算を仮定する. 解析空間 X の構造層を OX と書く. (X ,OX )が
被約解析空間のとき, 有理型関数のなす X 上の層を MX と書き, 複素 Lie 群 G に値をもつ正則
写像，連続写像，滑らか写像の層をそれぞれ OG , CG , EG と書く. X を位相空間，U = {Ui}を X

の開被覆，F を X 上の群の層とする．コサイクル {
f i j

}
,
{
g i j

} ∈ Z1(U,F ) について，コチェイン
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{hi} ∈ C0(U,F )が存在して，Ui ∩U j 上で f i j = h−1
i g i jh j が成り立つとき，

{
f i j

}∼ {
g i j

}と書くこ
とにする. このとき，1次コホモロジー集合を次のように定義する (例えば Leiterer [32]参照) :

H1(U,F ) := Z1(U,F )/∼ (商集合),

H1(X ,F ) := lim−−→H1(U,F ) (帰納的極限).

このとき，自然な写像 H1(U,F ) → H1(X ,F ) は単射である. コホモロジー集合の元をコホモロ
ジー類といい，コサイクル {1Ui∩U j } ∈ Z1(U,F ) の定める H1(X ,F ) のコホモロジー類 1F を中立
元 (neutral element)という.

X を位相空間，F ,G を X 上の群の層，λ : F → G を準同型とする. λ から導かれる写像
λ∗ : H1(X ,F )→ H1(X ,G )について，(λ∗)−1(1G )= {1F }のとき，λ∗ は準単射 (quasi-injective)で
あるという (Kajiwara [24, 25]参照). (X ,OX )を被約解析空間, G を複素 Lie群とするとき,標準写
像 H1(X ,OG) → H1(X ,CG) が準単射であるという条件は, D 上の正則主 G 束が位相的に自明なら
ば正則的にも自明であることを意味する.

(X ,OX ) を必ずしも被約とは限らない解析空間とし，red : (X ,Ored X ) → (X ,OX ) を被約化写像
とする. (X ,OX ) を解析空間とし，e : Ored X → (Ored X )∗ を X 上の層の準同型で， 各 x ∈ X と
fx ∈Ored X ,x に対して ex( fx) := exp(2π

p−1 fx)と定義する. ただし (Ored X )∗ は正則関数の逆元の芽
全体からなる可逆的層を表す.

すると e は準同型 e∗ : H1(X ,Ored X ) −→ H1(X , (Ored X )∗) を誘導する. 一般に, コホモロジー群
H1(X , (Ored X )∗)は (X ,OX )上の正則直線束の集合と同一視できる. 便宜のため，次の写像の合成の
像を Pic0(X )と記すことにする：

H1(X ,OX ) red∗
−−−→ H1(X ,Ored X ) e∗−−→ H1(X , (Ored X )∗).

被約解析空間 (X ,Ored X )上の Cartier因子 dとは (X ,Ored X )上の Cousin-II分布 {(Ui,mi)}i∈I の
ことを指す (Gunning [20, p. 121] 参照). {mi/m j} ∈ Z1({Ui}i∈I , (Ored X )∗) により定まる正則直線束
を [d]X と書き，これを dに付随する正則直線束という. (X ,Ored X )上のすべての Cartier因子全体
の集合を Div(X )と表す. この記法のもとで，[·]X : Div(X )→ H1(X , (Ored X )∗)と書くことができる.

また，解析空間 (X ,OX )に対して，任意の位相的自明な正則直線束がある Cartier因子から定まる
という条件は，Pic0(X )⊂ Im

(
[·]X : Div(X )→ H1(X , (Ored X )∗)

)と表現することができる．
3 Riemann領域

(X ,OX )を解析空間とする．第 2可算 Hausdorff空間 D と局所同相写像 π : D → X の対 (D,π)

を (X ,OX )の上の (不分岐) Riemann領域という．このとき，OD :=π∗(OX )とおけば，(D,OD)は
解析空間になる (例えば，Kaup–Kaup [29, pp. 96–97]参照)．(D,π) を (X ,OX )の上の Riemann

領域とする．次の 3 条件をみたす D 上のフィルター基 α を (D,π) の（到達可能）境界点という
(Docquier–Grauert [13]参照):

• αは触点をもたない．
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• 点 c ∈ X が存在して，X において limπ(α)= c．
• cの任意の連結 (開)近傍 U に対して，π−1(U)の連結成分 CU が唯一つ存在して，

α= {CU ; U は c の連結近傍 } .

さらに，αが上記の 3条件を満たし，さらに次の条件を満たすとき，αを (D,π)の通常境界点と
いう．

• limπ(α)が (X ,OX )の通常点である.

Riemann領域 (D,π)の境界点全体の集合を ∂̆D と書く．これを (D,π)の抽象境界という．同様
に，(D,π)の通常境界点全体の集合を ∂̆rD と書く．集合 D̆ := D∪ ∂̆D を (D,π)の抽象閉包という．
写像

π̆ : D̆ → X , π̆(x) :=
π(x) (x ∈ D),

limπ(x) (x ∈ ∂̆D),

を πの D̆ への拡張という．
点 x ∈ D に対しては，B(x)を xの D における近傍全体とし，点 x ∈ ∂̆D に対しては

B(x) := {P ∪ {α ∈ D̆ ; G ∈αが存在して G ⊂ P } ; P ∈ x}

と定めることにする．このとき，族 B := {B(x) ; x ∈ D̆}は基本近傍系の公理をみたし，集合 D̆ に位
相を定める．この位相のもとで，D̆ は正則空間であり，写像 π̆は連続である．

Cn の Euclidノルムを ‖ ·‖と書く. 集合 Bn(c, r) := { z ∈Cn ; ‖z− c‖ < r }を中心 c，半径 r の球と
し，以下では，省略記号 Bn(r) :=Bn(0, r),Bn :=Bn(1),U :=B1(1)を用いる.

(D,π) を Cn の上の Riemann 領域とする．任意の x ∈ D に対して，x の近傍 B が存在して
π(B) =Bn(π(x),ρ) かつ π|B : B →Bn(π(x),ρ) が双正則であるような ρ ∈ (0,+∞] の上限を dD(x) と
書き，関数 dD : D → (0,+∞]を Euclidノルム ‖·‖に関する (D,π)の境界距離関数という．D が連
結かつ πが双正則でないとき，任意の x ∈ D に対し dD(x)<+∞であり，関数 dD : D → (0,+∞)は
連続である．

Cn の開集合 D 上の上半連続関数 h : D → [−∞,+∞)について, G ⋐ D をみたす任意の開集合 G

と G の近傍で定義された任意の (実数値) 多重調和関数 h に対して, ∂G 上で u ≤ h ならば G 上
でも u ≤ h であるとき, u は D で (藤田の意味で) 劣多重調和 (subpluriharmonic) であるという
(Fujita [16, 17]参照).

(X ,OX )を n次元被約解析空間，u : X → [−∞,+∞)を上半連続関数，1≤ q ≤ nとする．Cq の任
意の開集合 G と任意の正則写像 f : G → X に対して，関数 u ◦ f : G → [−∞,+∞) が劣多重調和の
とき，uは (弱)q-多重劣調和であるという（Popa-Fischer [43]参照)．特に，q = 1のとき，uは多
重劣調和であるという．

Cn の上の Riemann領域 (D,π)に対して，関数 − logdD が D 上で q-多重劣調和のとき，(D,π)

は q-擬凸であるという（1 ≤ q ≤ n）．特に，q = 1のとき，擬凸であるという．Oka [41]の定理に
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より，Cn の上の Riemann領域 (D,π)について，D が Steinであることは (D,π) が擬凸であるこ
とと同値である．

n 次元被約解析空間 (X ,OX ) について，弱 q-多重劣調和な exhaustion 関数 u : X → [−∞,+∞)

が存在するとき，X は弱 q-擬凸であるという（1 ≤ q ≤ n）．特に，q = 1 のとき，弱擬凸であると
いう．Matsutomo [35]により，Cn 上の Riemann領域 (D,π)について，D が弱 q-擬凸であること
は (D,π)が q-擬凸であることと同値である．
写像 ψ= (ψ1, . . . ,ψn) :Cn →Cn について，ψk(z) ∈C[z1, . . . , zn]かつ deg ψk ≤ 2 (k = 1,2, . . . ,n)の
とき，ψを quadraticであるという．ψが全単射かつその逆写像 ψ−1 も quadraticであるとき，
その ψを Cn の quadratic automorphismという．

定理 3.1 (cf. Abe–Shima–Sugiyama [6, Theorem 4.1]). (D,π)を Cnの上の q-擬凸でないRiemann

領域とする（1 ≤ q ≤ n−1）．このとき，写像 ψ= (ψ1,ψ2, . . . ,ψn) : Cn → Cn，D の連結開集合 W，
および ŏ ∈ ∂̆D が存在して，次の 5条件が満たされる:

(1) H :=ψ
(
Cq+1 × {0}

)は Cn の q+1次元アフィン部分空間である．
(2) ψは quadratic automorphismであり，各 ψk は次の形である (k = 1,2, . . . ,n).

ψk(z1, z2, . . . , zn)= Pk(z1, z2, . . . , zq) +
n∑

ℓ=q+1
ckℓ zℓ,

ここで Pk(z1, . . . , zq) ∈C[z1, . . . , zq], degPk(z1, . . . , zq)≤ 2，ckℓ ∈C (ℓ= q+1, q+2, . . . ,n)．
(3) π(W)は Cn の開集合であり，かつ π|W : W →π(W)は双正則である．
(4) ψ

(
(Z\{(0q,0)})× {0n−q−1}

)⊂π(W)，ただし Z :=Bq × [0,1)．
(5) 写像

λ̆ :Z→ D̆, (ζ, t) 7→


(
π|W

)−1(
ψ(ζ, t,0n−q−1)

) (
(ζ, t) ∈Z\{(0q,0)}

)
,

ŏ
(
(ζ, t)= (0q,0)

)
は連続である．

この定理は，Abe–Shima–Sugiyama [6]のわずかな改良であり，境界に 1点だけで接するような
解析的球体族の存在が言える．これを Stein空間の上の領域に拡張する．ただし，以下では q = 1

の場合のみを取り扱う．

補題 3.2. (S,OS) を必ずしも被約とは限らない n 次元 Stein 空間とする．このとき，任意の
a ∈Reg(S,OS)に対して，次の 2条件をみたす正則写像 f : S →Cn が存在する:

(1) 任意の c ∈Cn に対して，集合 f −1(c)は離散的である．
(2) S における aの近傍 V が存在して， f (V )は Cn の開集合であり，かつ f |V : V → f (V )は双
正則である．

Riemann領域 (D,π)が境界点 α ∈ ∂̆D に対して，局所 Steinであるとは，ある CU ∈αが存在し
て，CU が Steinとなることである.
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補題 3.3. (S,OS) を必ずしも被約とは限らない純 n 次元 Stein 空間で n ≥ 2 とする．(D,π) を
(S,OS)の上の Riemann領域とし，(D,π)はある α ∈ ∂̆rDに対して，局所 Steinでないと仮定する.

このとき，正則写像 θ : S →Cn，S の連結 Stein開集合 Ω，D の連結開集合W，および ŏ ∈ ∂̆rD が
存在して，次の 7条件が満たされる:

(1) 任意の c ∈Cn に対して，集合 θ−1(c)は離散的である．
(2) θ(Ω)は Cn の開集合であり，かつ θ|Ω :Ω→ θ(Ω)は双正則である．
(3) π(W)は S の開集合であり，かつ π|W : W →π(W)は双正則である．
(4) π(W)⊂Ω．
(5) Z× {0n−2}⊂ θ(Ω)，ただし Z :=U× [0,1)．
(6) (θ|Ω)−1(Z\{(0,0)}

)× {0n−2} ⊂ π(W)．
(7) 写像

λ̆ : Z→ D̆, (ζ, t) 7−→


(
π|W

)−1
(
(θ|Ω)−1(ζ, t,0n−2

)) (
(ζ, t) ∈Z\{(0,0)}

)
,

ŏ
(
(ζ, t)= (0,0)

)
は連続である．

4 貼り合わせ法
前の章で存在が示された解析的円板族の存在から，Abe–Sugiyama [7, pp.15–18]の議論を用い
て，次のことを示すことができる．記号として，A(r1, r2) := {ζ ∈C ; r1 < |ζ| < r2}を用いる．

補題 4.1. (S,OS) を必ずしも被約とは限らない純 n 次元 Stein 空間で n ≥ 2 とする．(D,π) を
(S,OS)の上の Riemann領域とし，(D,π)はある α ∈ ∂̆rDに対して，局所 Steinでないと仮定する.

このとき,

• fiber discreteな正則写像 θ : S →Cn,

• Stein開集合 Ω⊂ S,開集合W ,W ′,W ′′, N ⊂ D,

• 実数 0< ρ1 < ρ2 < 1, 0< δ0 < 1,

が存在して, ξ := θ ◦πとおくことで，次の 11条件が満たせる:

(1) θ|Ω :Ω→ θ(Ω)は双正則である.

(2) B1(ρ2)×B1(δ0)n−1 ⊂ θ(Ω).

(3) ξ|W : W → ξ(W)は双正則で ξ(W)⊂ θ(Ω).

(4)
(
Z\{(0,0)}

)
× {0n−2}⊂ ξ(W).

(5) ξ−1(0n)∩W =;.

(6)
(
ξ−1(Z×{0n−2})∩W

)∪(
ξ−1(A(ρ1,ρ2)×B1(δ0)n−1)∩W

)⊂W ′.

(7) ξ−1(Z× {0n−2})\W ⊂W ′′.

(8) W ′∩ξ−1(Un)⊂W ∩ξ−1(Un).
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(9) W ′∩W ′′∩ξ−1(Un)=;.

(10) N は Steinである.

(11) ξ−1(C× {0n−1})⊂ N ⊂W ′∪W ′′∪ξ−1(B1(ρ3)×B1(δ0)n−1
C

),但し，ρ3 = (1+ρ2)/2.

この 11条件を満たせば, 境界局所的に貼り合わせを行って，新たな Riemann領域を構成でき
る．(D,π) は純 n 次元 Stein 空間の上の Riemann 領域で，補題 4.1 の 11 条件を満たすとする．
(ξ|W )−1 (A(ρ1,ρ2)×{0n−1})⊂ ξ−1(C×{0n−1})だから，ある δ ∈ (0,δ0)が存在して，(ξ|W )−1 (A(ρ1,ρ2)×
B1(δ)

n−1
)⊂ N とできる．

A :=A(ρ1,ρ2)×B1(δ)n−1, P :=B1(ρ2)×B1(δ)n−1,

P ′ :=W ′∩ξ−1(P), P ′′ :=W ′′∩ξ−1(P), R := ξ−1(C×B1(δ)n−1),

A′ := (ξ|W )−1 (A), Q := R∩N \
(
P ′∩ξ−1(B1(ρ1)×Cn−1)

)
.

とおく．まず，

A′ = (ξ|P ′ )−1 (A)⊂ P ′, P ′ ⊂W , P ′∩P ′′ =;,

P ′∩Q = A′,Q = R∩N \
(
P ′∩ξ−1(B1(ρ1)×Cn−1)

)
が成り立つ. D1 := (

P ′ \{ξ1 = 0}
)∪Q とおき，ν= 2,3, . . . ,nに対して，Dν := {ξν 6= 0}とおく.

補題 4.2 (Abe–Sugiyama [7, Proposition 5.6]). {Dν}n
ν=1 は D の開被覆をあたえる.

次に，P と Q を貼り合わせる．P ∪̇Q を P と Q の直和とする. ∼を以下の条件を満たす同値関
係で最小のものとする．

• x ∈ P かつ y ∈Q のとき，x ∼ y⇔ x ∈ A, y ∈ A′ かつ x = ξ(y).

X̃ := (P ∪̇Q) /∼として，q : P ∪̇ Q → X̃ , x 7→ [x]を商写像とする．qが連続となるように X̃ に最強
の位相を入れる．

補題 4.3 (Abe–Sugiyama [7, Proposition 5.7, 5.8]). 次の 3条件が満たされる:

• 商写像 q : P ∪̇Q → X̃ は開写像である．
• q|P : P → q(P)と q|Q : Q → q(Q)は位相同型である.

• X̃ は第 2可算な Hausdorff空間である.

次に，X̃ に被約化を取りやすいような解析構造を入れる．写像 µを以下のように定義する:

µ : X̃ → S, µ :=
{

(θ|Ω)−1 ◦ (q|P )−1 on q(P),
π◦ (q|Q)−1 on q(Q).

このとき，µ は局所同相写像になるから，(X̃ ,µ) は (S,OS) の上の Riemann 領域になる．さら
に，µは Stein morphismである．なお，解析空間の間の正則写像 ρ : (X ,OX )→ (Y ,OY )が Stein
morphismであるとは，Y の Stein開被覆 {Uk}が存在し，任意の kに対して，ρ−1(Uk)が Steinに
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なることを言う. Colţoiu–Diederich [12]による特異点が離散的な被約 Stein空間の上の Riemann

領域での Leviの問題 (Peternell [42]参照)の解決を用いることで次を得る．

補題 4.4 (cf. Abe–Sugiyama [7, Proposition 6.1]). Sing(S,Ored S) は離散的とする. このとき，
(X̃ ,OX̃ )は Steinとなる．但し，OX̃ は µから定まる標準解析構造である.

補題 4.5 (cf. Abe–Sugiyama [7, Proposition 6.2]). {Dν}n
ν=1, X̃ , P, P ′ をこの章で定義したものとす

る．Sing(S,Ored S)は離散的とする. このとき，ある v ∈OD(D1)と v0 ∈O(P)が存在し，P ′ 上で，
v = 1/ξ1 +v0 ◦ξが成立する．

5 条件 (O)の場合
この章では，ある複素 Lie群に対するOka-Grauertの原理を満たすという仮定 (O)の場合の証明
の概略を述べておく (Abe–Sugiyama [7]参照)．ここでは，底空間は Stein多様体で考察する．仮
定 (O)の場合はコチェインの次数下げ法を用いる (Laufer [31], Mori [36], Watanabe [51], Abe [2]

参照)．以下の補題 5.1および 5.2は，本質的にはKajiwara–Kazama [26]による．T :=U2\{(0,0)},

U1 := {(z1, z2) ∈T ; z1 6= 0},U2 := {(z1, z2) ∈T ; z2 6= 0}とおく．

補題 5.1 (Abe [2, Lemma 3.2]). c ∈ C∗ とする．関数 g := e
(
c
(

1
z1

+ 1
z2

))
∈ O(U1 ∩U2) に対して，

g ∉ B1({U1,U2},MT)が成り立つ．

(X ,OX )を被約解析空間, G を複素 Lie群, gを G の Lie環とする．このとき, g=CdimG とみな
すことができて,指数写像 exp : g→G は正則である．

補題 5.2 (Abe–Sugiyama [7, Lemma 2.6]). G を複素 Lie群，gをその Lie代数，v ∈ g\{0}とする．
G が可換であるか，あるいは adv 6= 0であると仮定する．g ∈O(U1 ∩U2)とし，ある s ∈O(U2)が
存在して s 6≡ 0かつ exp(gsv) ∈ B1({U1,U2},OG)であると仮定する．このとき g ∈ B1({U1,U2},MT)

が成り立つ．

(X ,OX ) を被約解析空間とし，n ≥ 2 とする．X1, X2 を X の開集合とする．n ≥ 3 のときは，
ξ3, . . . ,ξn ∈O(X )を与え，Xν := {ξν 6= 0}, 3≤ ν≤ nと定める．さらに次の 2条件を仮定する:

• Hk(X ,OX )= 0 (2≤ k ≤ n−1)．
• X =⋃n

ν=1 Xν．

さらに {Xν}n
ν=1 の細分である Stein 開被覆 U= {Uλ}λ∈Λ をとり，α : Λ→ {1,2, . . . ,n} をその細分

写像とする．これにより誘導される準同型 α∗ : C1({Xν}n
ν=1,OX )→ C1(U,OX )を考える．このとき，

コチェインの次数下げ補題が成り立つ．

補題 5.3 (Abe [2, Corollary 5.3]). 任意の h ∈O(X1 ∩ X2)をとり，

η(3···n) =
{
η(3···n)
ν1ν2

}
∈ C1({Xν}n

ν=1,OX )
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を次で定める：
η(3···n)
ν1ν2

=
{

(−1)(n−2)+(3+···+n) h if (ν1,ν2)= (1,2),
0 otherwise,

ただし 1≤ ν1 < ν2 ≤ n．このとき，3≤ κ≤ nに対して f (3···�κ···n) ∈ C1(U,OX )が存在し，

u(3···n) :=−
n∑

κ=3
(−1)κ−3 ξκ f (3···�κ···n) +α∗(η(3···n)) ∈ Z1(U,OX )

となる．

(X ,OX )を被約解析空間, G を複素 Lie 群, g を G の Lie 環とする．任意の v ∈ g に対して, 写像
ΦG,v : H1(X ,OX )→ H1(X ,OG)を次のように定義する：
コサイクル {hi j} ∈ Z1({Ui},OX ) の定める H1(X ,OX ) のコホモロジー類 c に対して, コサイクル

{exp(hi jv)} ∈ Z1({Ui},OG)の定める H1(X ,OG)のコホモロジー類を ΦG,v(c)とする．

補題 5.4 (Abe [2, Lemma 2.2]). (X ,OX ) を被約解析空間, G を複素 Lie 群, g を G の Lie 環とす
る．標準写像 H1(X ,OG) → H1(X ,EG) が準単射ならば, 任意の v ∈ g と c ∈ H1(X ,OX ) に対して,

ΦG,v(c)は H1(X ,OG)の中立元である．

以下の補題 5.5は背理法による. 局所 Steinでないと仮定すれば，第 4章にある貼り合わせ法が
使えて，コチェインの次数下げ補題 5.3が使えるような開被覆 {Dν}n

ν=1 と関数 h ∈O(D1 ∩D2)が構
成できる．それらを {ξ3 = ·· · = ξn = 0}に制限することで，補題 5.1と補題 5.2に矛盾する状況に到
達する．

補題 5.5 (Abe–Sugiyama [7, Lemma 4.3]). Sを n次元 Stein多様体, (D,π)を Sの上の Riemann

領域, G を正の次元の複素 Lie群, gを G の Lie環, v ∈ g\{0}とする．G が可換であるか，あるい
は adv 6= 0であると仮定する．次の 2条件を仮定する:

• Hk(D,OD)= 0 (2≤ k ≤ n−1)．
• 任意の c ∈ H1(D,OD)に対して, ΦG,v(c)は H1(D,OG)の中立元である.

このとき, D は局所 Steinである.

補題 5.4, 5.5と Docquier–Grauertの定理 [13]から次の定理が得られる．

定理 5.6 (Abe–Sugiyama [7, Theorem 7.1]). Sを n次元 Stein多様体, (D,π)を Sの上の Riemann

領域とし，次の 2条件を仮定する:

• Hk(D,OD)= 0 (2≤ k ≤ n−1)．
• 正の次元の複素 Lie群 G が存在して，H1(D,OG)→ H1(D,EG)は準単射である.

このとき, D は Steinである.

注意 5.7. Ballico [8, 9]により，定理 5.6の条件「Hk(D,OD) = 0 (2 ≤ k ≤ n−1)」は見かけ上は弱
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い条件「dimHk(D,OD)≤ℵ0 (2≤ k ≤ n−1)」に置き換えることができる.

6 条件 (C)の場合
2次元の場合には，ある複素 Lie群に関する Oka-Grauertの原理を満たす条件 (O)の下でも，ま
た任意の位相的自明な正則直線束が Cartier因子から定まる条件 (C)の下でも，証明の基本的な流
れは同一である．ここで強調しておきたいことは，いずれの場合も Kajiwara–Kazama [26] の論
法を拡張した貼り合わせ法に基づいており，2次元の場合が証明方針の最も基本的な形をなしてい
るという点である．

補題 6.1 (Abe [1, Lemma 1]). M を H2(M,Z)= 0を満たす 2次元 Stein多様体とする. A を M の
非空な離散部分集合とし，L を開集合 M \ A 上の正則直線束とする. このとき，L が正則的に自明
であることと，ある Cartier因子 dが M \ A 上に存在して L = [d]M\A となることとは同値である.

補題 6.2 (cf. Kajiwara [23, Lemma 1]). T :=U2 \{(0,0)}, U1 = {(z1, z2) ∈T ; z1 6= 0},U2 = {(z1, z2) ∈
T ; z2 6= 0} とする．このとき，exp

(
1

z1 z2

)
∈ Z1({U1,U2},OT) によって定義される正則直線束 L は，

正則的に自明ではない．

定理 6.3. (S,OS)を必ずしも被約とは限らない純 2次元 Stein空間として，Sing(S,Ored S)は離散
的とする．(D,π)を (S,OS)の上の Riemann領域で Pic0(D)⊂ Im

(
[·]D : Div(D)→ H1(D, (OredD)∗)

)
であるとする. このとき，(D,π)は通常境界点に関して局所 Steinである．

証明. 矛盾を導くために，ある通常境界点 αに関して局所 Steinでないとする．すると，補題 4.1

の 11 条件を満たす．従って Riemann 領域の貼り合わせが実行できる．δ ∈ (0,δ0) が存在して，
ξ−1(A(ρ1,ρ2)×B1(δ))∩W ⊂ N が成立する. 更には，

A =A(ρ1,ρ2)×B1(δ), P =B1(ρ2)×B1(δ),

P ′ =W ′∩ξ−1(P), P ′′ =W ′′∩ξ−1(P), R = ξ−1(C×B1(δ)),

A′ = (ξ|W )−1 (A), Q = R∩N \
(
P ′∩ξ−1(B1(ρ1)×C)

)
.

とおける．補題 4.4により, X̃ = (P ∪̇Q) /∼は Stein. 補題 4.5によって, v ∈OD(D1)と v0 ∈O(P)存
在して，P ′ 上で，v = 1/ξ1 + v0 ◦ξ なる表示をもつ．補題 4.2により，{D1,D2}は D の開被覆であ
る. 関数 h = v/ξ2 は D1 ∩D2 上の正則関数である. このとき，e∗(red∗(h))から定まる正則直線束は
Cartier因子から定まらなくなる．実際，仮に，gν ∈M∗(Dν∩P ′) (ν= 1,2)が存在して，

exp(v/ξ2)= g2/g1 on D1 ∩D2 ∩P ′. (⋆)

とする．(⋆) から矛盾を導くため，P ′ 内に Hartogs 図形を描く. 任意に t ∈ (0,1) を取れば，
(ξ|W )−1(B1(ρ2)× {t}) ⋐ W ′. 従って，r(t) ∈ (0,min{t,1− t}) を十分小さくとって，(ξ|W )−1(B1(ρ2)×
B1(t, r(t)))⊂W ′. 従って，(ξ|W )−1

(
B1(ρ2)×B1(δ/3, r(δ/3))

)
⊂ P ′. 明らかに，A(ρ1,ρ2)×B1(δ/3,δ/2)⊂
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A(ρ1,ρ2)×B1(δ)である. 従って，

(ξ|W )−1 ({
B1(ρ2)×B1(δ/3, r(δ/3))

}∪{
A(ρ1,ρ2)×B1(δ/3,δ/2)

})⊂ P ′.

H := {
B1(ρ2)×B1(δ/3, r(δ/3))

}∪ {
A(ρ1,ρ2)×B1(δ/3,δ/2)

} かつ Hν := H∩ {zν 6= 0} (ν = 1,2) とおく．
H は Hartogs 図形で, H の正則被は B1(ρ2)×B1(δ/3,δ/2) である. Oν := ξ(Dν ∩P ′) ⊂ C2 とおく.

{Oν}ν=1,2 は Hの開被覆となる. (⋆)に (ξ|W )−1 を合成すると

exp(v/ξ2)◦ (ξ|W )−1 = g2 ◦ (ξ|W )−1/g1 ◦ (ξ|W )−1 on O1 ∩O2 ∩ξ(W).

f (1) := g1 ◦ (ξ|W )−1 と f (2) := exp
(
− v0

z2

)
· (g2 ◦ (ξ|W )−1)とおくと，

f (1) exp
(

1
z1z2

)
= f (2) on O1 ∩O2 ∩P.

Grauert–Remmert [18] (Jarnicki–Pflug [22]の Theorem 2.5.9)と Kajiwara–Sakai [28]の定理か
ら，F (ν) ∈M∗(Eν)で Hν 上で F (ν) = f (ν) (ν= 1,2). ただし，Eν := {

B1(ρ2)×B1(δ/3,δ/2)
}∩ {zν 6= 0}

である．Hν ⊂Oν なので，

F (1) exp
(

1
z1z2

)
= F (2) on E1 ∩E2 ∩P.

を得る．これから補題 6.1を用いると，U2 \{02}上で exp
(

1
z1 z2

)
は正則的自明な正則直線束を定め

ることになるとわかるが，これは補題 6.2に反する．これで，e∗(red∗(h))から定まる正則直線束は
Cartier因子から定まらないとわかった．これは Pic0(D)⊂ Im

(
[·]D : Div(D)→ H1(D, (OredD)∗)

)と
矛盾する．これで，2次元の場合は証明された．

次に，n次元の場合を考察する．これには次元帰納法を用いる．まず，特異点が離散的な Stein

空間の上の Riemann領域を"良い方向"で切断できることをみる． f ∈OX (X )に対して， f の零集
合を Z f := {x ∈ X ; f (x)= 0}と書く．

補題 6.4. (S,OS)を被約純 n次元 Stein空間で n ≥ 3とする．Sing(S,OS)は離散的とする. 任意の
a ∈Reg(S,OS)に対して,ある正則写像 G = (g1, . . . , gn) : S →Cn が存在して，次の 5条件を満たす:

(1) G(a)= 0n ∈Cn.

(2) detG(a) 6= 0.

(3) 各 gν は任意の x ∈ Zgν ∩Reg(S,OS)に対し，dgν(x) 6= 0.

(4) 各 νに対し，Zgν ∩Sing(S,OS)=;.

(5) 各 νに対し，Zgν 上で gν の多重度が 1.

この補題は Stein空間の埋め込み定理 [37]を用いて，埋め込み先の C2n+1 で各成分が 1次関数
になる写像をうまく選ぶことで示せる (cf. Vâjâitu [50, p.533])．必ずしも被約とは限らない場合も
含んで考察するため，次の記法を用意しておく．関数 f ∈OX (X )に対して，

• X の元の構造層 OX により誘導される構造を OZ f :=OX / fOX と表す．
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• 被約化された構造層 Ored X により誘導される構造を ÕZ f :=Ored X / fredOred X と表す．

補題 6.4と補題 3.3を用いることで，Lelong-Hitotumatu型 (Lelong [34], Hitotumatu [21])の補
題を得る．

補題 6.5 (cf. Breaz–Vâjâitu [11, Theorem 2]). (S,OS)を必ずしも被約とは限らない純 n次元 Stein

空間で n ≥ 3とする．Sing(S,Ored S)は離散的とする．(D,π)を (S,OS)の上の Riemann領域とす
る. 以下の条件 (⋆)を仮定する．

(⋆) 零集合 (Z f ,ÕZ f )は滑らかで f が (Z f ,ÕZ f )上で多重度が 1となるような任意の f ∈OS(S)

に対して，そこから定まる (Z f ,OZ f )の上の Riemann領域 (D f ,π f ) は通常境界点に関して
局所 Steinである．

このとき，(D,π) は通常境界点に関して局所 Stein である．但し，D f := π−1(Z f ),π f := π|D f で
ある．

この補題 6.5により次元帰納法を使うことで次が示せる．

定理 6.6 (cf. Breaz–Vâjâitu [11, Theorem 4]). (S,OS) を必ずしも被約とは限らない純 n 次元
Cohen-Macaulay Stein 空間として，Sing(S,Ored S) は離散的とする．(D,π) を (S,OS) の上の
Riemann領域とし，次の 2条件を満たすとする:

• Hk(D,OD)= 0 (2≤ k ≤ n−1).

• Pic0(D)⊂ Im
(
[·]D : Div(D)→ H1(D, (OredD)∗)

)
.

このとき， (D,π)は通常境界点に関して局所 Steinである.

7 関連するいくつかの結果
条件 (O) と条件 (C) は, いずれも Cousin-II 問題と深く関わっている. この Cousin-II 問題は,

Oka-Grauertの原理の名称にも見られるように, Okaの主要な研究対象の 1つであった [40]. 他方
で, Oka が初期に取り組んだ研究課題 [38, 39]の 1つである Cousin-I 問題に関しては，どのよう
な結果が得られるのかを問うのは自然と思う. 本章では,関連する結果として Cousin-I性に関する
定理を述べる.

(X ,OX )を被約解析空間とする．X が Cousin-Iであるとは，Cousin-I問題が常に解を持つこと
である．これはコホモロジー的条件「標準写像 H1(X ,OX )→ H1(X ,MX )が単射である」と表現す
ることができる (Grauert–Remmert [19, p. 137])．従って，Cousin-I性もコホモロジー的条件と
して取り扱うことができる．

定理 7.1 (Abe–Furushima [4, Theorem 4]). (X ,OX )を連結な正規解析空間とし，次の 2条件を仮
定する:
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• 定数でない任意の f ∈OX (X )に対して，Z f は Steinである．
• X は Cousin-Iである．

このとき，X は Kernerの意味 [30]での K被 H(X )が定まり，X = H(X )が成り立つ．

定理 7.2 (Abe–Abe [5, Theorem 8]). S を n次元 Stein 多様体，(D,π)を S の上の Riemann領域
とし，次の 2条件を仮定する:

• S上の任意の Z f が非特異であるような非定数正則関数 f に対して，集合 { y ∈ D | ( f ◦π)(y)=
0 }は Steinである.

• D は Cousin-Iである．

このとき，D は Steinである.

これらのことと前の章の定理から，2次元 Stein多様体の上の Riemann領域に対して，次の同
値性が成り立つ．

系 7.3. S を 2次元 Stein 多様体，(D,π)を S の上の Riemann 領域とする．このとき，次の 4条
件は同値である:

(1) D は Steinである．
(2) D は Cousin-Iである.

(3) Pic0(D)⊂ Im
(
[·]D : Div(D)→ H1(D,O∗

D)
)
.

(4) 正の次元の複素 Lie群 G が存在して，H1(D,OG)→ H1(D,EG)は準単射である．

Cousin-I性を高次コホモロジー群へ拡張した条件「Hk(D,OD)→ Hk(D,MD)が単射」を考察し
た研究 [46, 47, 48]もあり，中間的擬凸性についても，被約 Stein空間の内部領域に対して類似し
た結果が得られている．以下は Eastwood–Suria [14]の定理の一般化となっている．

定理 7.4 (Sugiyama [48, Theorem 4.1]). (X ,OX )を純 n次元被約 Stein空間, D を X内の開集合，
1≤ q ≤ n−1とする．次の 2条件を仮定する:

• Hn−1(D,OD)→ Hn−1(D,MD)が単射である．
• Hk(D,OD)= 0 (q ≤ k ≤ n−2).

このとき，D は任意の p ∈ ∂D \Sing(X )に対して，局所弱 q-擬凸である．
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[15] Forstnerič, F.: Stein manifolds and holomorphic mappings: The homotopy principle in

complex analysis. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 56, 2nd edn.

Springer, Cham, 2017

[16] Fujita, O.: Domaines pseudoconvexes d’ordre général et fonctions pseudoconvexes d’ordre

général. J. Math. Kyoto Univ. 30, 637–649 (1990)

[17] Fujita, O.: On the equivalence of the q-plurisubharmonic functions and the pseudoconvex

functions of general order.人間文化研究科年報（奈良女子大学）7, 77–81 (1991)

[18] Grauert, H., Remmert, R.: Konvexität in der komplexen Analysis. Nicht-holomorph-

konvexe Holomorphiegebiete und Anwendungen auf die Abbildungstheorie. Comment.

Math. Helv. 31, 152–183 (1956)

[19] Grauert, H., Remmert, R.: Theory of Stein Spaces, Grundl. Math. Wiss. vol.236. Springer,

Berlin, 1979

14



[20] Gunning, R. C.: Introduction to holomorphic functions of several variables. Vol. III,

Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA, 1990.

[21] Hitotumatu, S.: On some conjectures concerning pseudo-convex domains. J. Math. Soc.

Japan 6, 177–195 (1954)

[22] Jarnicki, M., Pflug, P.: Extension of holomorphic functions. De Gruyter Exp. Math. 34,

Walter de Gruyter & Co., Berlin, 2000

[23] Kajiwara, J.: On Thullen’s example of a Cousin-II domain. Sci. Rep. Kanazawa Univ. 9,

1–8 (1964)

[24] Kajiwara, J.: Characterization of Stein subdomains of a complex projective space through

Oka’s principle. Math. Balkanica 8, 131–137 (1978)

[25] Kajiwara, J.: Equivalence of Steinness and validity of Oka’s principle for subdomains with

continuous boundaries of a Stein manifold. Mem. Fac. Sci. Kyushu Univ. Ser. A Math. 33,

83–93 (1979)

[26] Kajiwara, J., Kazama, H.: Two dimensional complex manifold with vanishing cohomology

set. Math. Ann. 204, 1–12 (1973)

[27] Kajiwara, J., Nishihara, M.: Charakterisierung der Steinschen Teilgebieten durch

Okasches Prinzip in zwei-dimensionaler Steinscher Mannigfaltigkeit. Mem. Fac. Sci.

Kyushu Univ. Ser. A. Math. 33, 71–76 (1979)

[28] Kajiwara, J., Sakai, E.: Generalization of Levi-Oka’s theorem concerning meromorphic

functions. Nagoya Math. J. 29, 75–84 (1967)

[29] Kaup, L.,Kaup, B.: Holomorphic functions of several variables. An introduction to the

fundamental theory, Walter de Gruyter, Berlin, 1983

[30] Kerner, H.: Holomorphiehüllen zu K-vollständigen komplexen Räumen. Math. Ann. 138,

316–328 (1959)

[31] Laufer, H. B. :On sheaf cohomology and envelopes of holomorphy. Ann. of Math. (2) 84,

102–118 (1966)

[32] Leiterer, J.: Equivalence of Steinness and validity of Oka’s principle for subdomains of

Stein manifolds. Math. Nachr. 89, 181–183 (1979)

[33] Leiterer, J.: Holomorphic vector bundles and the Oka-Grauert principle. In: Gindikin,

S.G., Khenkin, G.M. (eds.) Several complex variables IV, Encyclopaedia Math. Sci., 10, pp.

63–103. Springer, Berlin (1990)

[34] Lelong, P.: Domaines convexes par rapport aux fonctions plurisousharmoniques. J. Analyse

Math. 2, 178–208 (1952)

[35] Matsutomo, K.: Pseudoconvex Riemann domains of general order over Stein manifolds.

Mem. Fac. Sci. Kyushu Univ. Ser. A. Math. 44, 95–109 (1990)

[36] Mori, Y.: A complex manifold with vanishing cohomology sets. Mem. Fac. Sci. Kyushu Univ.

Ser. A. Math. 26, 179–191 (1972)

15



[37] Narasimhan, R.: Imbedding of holomorphically complete complex spaces. Amer. J. Math.

82, 917–934 (1960)

[38] Oka, K.: Sur les fonctions analytiques de plusieurs variables. I: Domaines convexes par

rapport aux fonctions rationnelles. J. Sci. Hiroshima Univ. 6, 245–255 (1936)

[39] Oka, K.: Sur les fonctions analytiques de plusieurs variables. II: Domaines d’holomorphie.

J. Sci. Hiroshima Univ., 7, 115–130 (1937).

[40] Oka, K.: Sur les fonctions analytiques de plusieurs variables. III: Deuxième problème de

Cousin. J. Sci. Hirosima Univ. 9, 7–19 (1939)

[41] Oka, K.: Sur les fonctions analytiques de plusieurs variables. IX: Domaines finis sans point

critique intérieur. Japan. J. Math. 27, 97–155 (1953)

[42] Peternell, T.: Pseudoconvexity, the Levi problem and vanishing theorems. Several complex

variables, VII, Encyclopaedia Math. Sci., 74, pp. 221–257 Springer-Verlag, Berlin, 1994

[43] Popa-Fischer, A.: A generalization to the q-convex case of a theorem of Fornæss and

Narasimhan. Michigan Math. J. 50, 483–492 (2002)

[44] Serre, J.-P.: Quelques problèmes globaux relatifs aux variétés de Stein. Centre Belge Rech.

math., Colloque fonctions plusieurs variables, Bruxelles du 11 au 14 mars 1953, 57–68

(1953)

[45] Siu, Y.T.: Non-countable dimensions of cohomology groups of analytic sheaves and domains

of holomorphy. Math. Z. 102, 17–29 (1967)

[46] Sugiyama, S.: Generalized Cartan-Behnke-Stein’s theorem and q-pseudoconvexity in a

Stein manifold. Tohoku Math. J. (2) 72, 527–535 (2020)

[47] Sugiyama, S.: An open set satisfying a local intermediate Cousin-I condition in a complex

space, Kobe J. Math. 40, No. 1-2, 47–56 (2023)

[48] Sugiyama, S.: q-complete with corners open sets and vanishing cohomology groups. Bol.

Soc. Mat. Mex., III. Ser. 31, No. 1, Paper No. 31, (2025)

[49] Sugiyama, S.: Holomorphic line bundles and divisors on Riemann domains over Cohen-

Macaulay Stein spaces. Preprint.

[50] Vâjâitu, V.: Pseudoconvex domains over q-complete manifolds, Ann. Scuola Norm. Sup.

Pisa Cl. Sci. (4) 29, , no. 3, 503–530 (2000)

[51] Watanabe, K.: Pseudoconvex domains of general order and vanishing cohomology, Kobe J.

Math. 10, No. 1, 107–115 (1993)

16


