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概要
Riemann 面上の正則 2 次微分は調和写像を介して双曲構造を定める．とくに，複素平面上
の多項式 2次微分は双曲理想多角形のモジュライを記述する．本講演では，この「退化版」で
ある R-木のモジュライへの対応を扱う．多項式のなす空間において，次数が下がる方向のア
フィンレイに沿って R-木のスケーリング極限をとると，特殊なスケーリングで非自明な幾何的
極限が発生することが観察できる．このような現象の発生条件や幾何的極限について述べる．

1 導入
1.1 The harmonic map parametrization

本研究の動機づけを説明するために，[Wol89] にしたがって Teichmüller 空間の harmonic

map parametrization について説明する．まず，S を向きづけられた連結な閉曲面とし，S の
Teichmüller空間 T (S)を S 上の双曲構造のアイソトピー類のなす集合として定義する．また，S

に複素構造をのせた Riemann面 X 上の正則 2次微分のなすベクトル空間を Q(X)と表す．双曲
曲面 C ∈ T (S) に対して，恒等写像とアイソトピックな調和微分同相写像 u : X → C が一意的
に存在する [ES64, Har67, Sam78]．このとき，双曲曲面 C を定める計量の引き戻し u∗C の dz2-

パートは正則 2次微分になっており，したがって，写像

Φ: T (S) → Q(X);C 7→ (u∗C)2,0 (1.1)

が得られる．写像 Φを harmonic map parametrization とよぶ．Wolfは写像 Φが同相であ
ることを示した [Wol89]．
一方で，正則 2 次微分 q ∈ Q(X) に対して，q の垂直測度付き葉層構造という S 上の特異葉
層構造と横断的測度の対 Fv(q) が定まる（例えば，[Gar87]）．この対応は正の実数による定数
倍の作用で同変的であるから，正則 2 次微分の射影類の空間 PQ(X) := Q(X) − {0}/R>0 から
Thurston 境界 ∂T (S)（すなわち，S 上の測度付き葉層構造構造の射影類のなす空間）への写像
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[Fv] : PQ(X) → ∂T (S) が誘導される．正則 2 次微分のなすベクトル空間 Q(X) の球面コンパク
ト化を Q(X) = Q(X) ∪ PQ(X)と表し，Teichmüller空間の Thurstonコンパクト化を T (S)と
表す（Thurstonコンパクト化については [FLP12]などを参照）．Wolfは，写像 ρ̄ : Q(X) → T (S)

を内部では Φ−1，境界では [Fv]として定義し，ρ̄が同相写像になることを示した [Wol89]．
Teichmüller空間の harmonic map parametrizationやその Thurstonコンパクト化への拡張の
結果は，尖点付きの双曲構造の場合にも，同様に成り立つ [Loh91, Sak23]．

1.2 境界付き曲面の場合
実は，境界付き曲面の Teichmüller空間においても harmonic map parametrizationは与えられ
ている [Wol91, Sag23, All24, Gup21]．この場合のパラメータ空間について説明する．まず，X

を針孔付き閉 Riemann 面とし，針孔の集合を {p1, . . . , pn}とする．各針孔 pi まわりの局所座標
(Ui, zi)を固定しておく．X 上の正則 2次微分 q が pi で極をもつと仮定する．正則 2次微分 q の
pi での主要部 (principal part)とは，±√

q dzi を Laurent展開した際の −1次以下の項を指す．
あらかじめ，各 pi に対して主要部データ P = {±Pi(zi) dzi}を付与しておき，P を主要部として
実現するようなX 上の正則 2次微分の集合をQ(X,P)と表す．各 pi 周りの主要部を 2乗した P 2

i

における極の位数をmi (≥ 3)とする．X 上の因子 E を

E =

n∑
i=1

si
2
pi

で定める．ここで，mi が奇数のとき，si = mi + 1，mi が偶数のとき，si = mi である．このと
き，Q(X,P)は

Q(X,P) = {∗}+H0(X,ΩX(E)⊗2) (∗ ∈ Q(X,P))

と表され，アフィン空間の構造をもつことに注意する．
次に，パラメトライズされる Teichmüller空間について述べよう．位相的な曲面 S を，X を各

pi で real oriented blowup し，(mi − 2)個の点を pi に対応する境界から除いたものとして定義す
る．曲面 S は（測地境界を持つ完備な有限面積の）双曲構造を許容すると仮定する．このとき，S

上の双曲構造に対して，P との “compatibility condition”が定義される（これは各 pi に対して定
義される，metric residue という双曲構造の不変量に関する条件であるが，ここでは省略する．詳
しくは [All24, Sak25]などを参照）．この “compatibility condition” を満たす S 上の双曲構造の
なす Teichmüller空間を T (S,P)と表す．
Guptaは (1.1)と同様のタイプの parametrization

Φ: T (S,P) → Q(X,P) (1.2)

が得られること，および Φ が同相写像となることを示した [Gup21]．閉曲面の場合，harmonic

map parametrization はコンパクト化の境界まで自然に拡張されたことを踏まえると，境界付き
曲面でも同様の結果を期待するのは自然である．閉曲面の場合は，Q(X)における原点を起点とす



る ray {tq}t>0 ⊂ Q(X)に沿った双曲構造の極限を求めることが，重要なステップのひとつであっ
た．しかし，境界付き曲面の場合，パラメータ空間 Q(X,P)は前述したようにアフィン空間であ
るので，原点を起点とする rayに沿った双曲構造の退化族を考えることはできない．そこで，次点
で解析が容易そうな正則 2次微分の族として，affine ray

p+ tq (p ∈ Q(X,P), q ∈ H0(X,Ω(E)⊗2), t > 0)

を考え，affine rayに沿った双曲構造の退化を調べたいというのが動機である．

2 設定
2.1 多項式に付随する R-tree

Riemann面 X を CP 1 \ {∞}，すなわち複素平面 Cとする．このとき，∞で m + 4位の極を
持つ X 上の正則 2次微分の空間は，m次の C係数多項式の空間 C[z]m と同一視できる．C係数
のm次多項式 2次微分 p(z) dz2 に対して，C上の擬距離 dhp : C× C → R≥0 が

dhp(z1, z2) =

∣∣∣∣∫ z2

z1

Re(
√
p dz)

∣∣∣∣
により定まる．擬距離 dhp を水平移動距離 (horizontal translation length)という．C上の同
値関係を z1 ∼ z2 を dhp(z1, z2) = 0で定義する．この同値関係による商空間X/ ∼を T (p)と表す．
つまり，T (p)は，擬距離 dhp によるmetric identificationであり，dhp による自然な距離をもつ距離
空間である．自然な全射 π : C → T (p)は collapsing mapと呼ばれる．距離空間として，T (p)は
R-木の構造を持つ（図 1）．（T (p)は p(z) dz2 に付随する垂直測度付き葉層構造の leaf spaceであ
る．）点 z0 ∈ Cを多項式 pの零点とするとき，π(z0)が R-木 T (p)の頂点（すなわち，枝分かれし
ている点）に対応する．多項式 2次微分の零点は有限個であるため，T (p)の頂点は有限個である．
さらに，T (p)は無限遠点で (m+ 2)価の枝分かれを持つことがわかる．無限遠点で (m+ 2)価の
枝分かれを持つような R-木全体のなす空間を Treem+2 と表す．

図 1 左図：(z4 + 1) dz2 に付随する垂直測度付き葉層構造．この “等高線”はmetric identifi-

cationにおける同値類を表す．右図：R-木 T ((z4 + 1) dz2)．無限遠で 6価の枝分かれを持つ．



2.2 調和写像との関係
Collapsing map π : X → T (p) はある種の調和写像とみなすことができる [KS97, Wol95]．ま
た，双曲理想多角形 C が T (p)へ退化するとき，調和写像 u : X → C は π : X → T (p)に広義一
様収束する，この意味で π は調和写像としての退化先とみなせる [Wol95]．写像 (1.2)の逆写像は
（主要部データ全体に渡って合併をとることで）全射写像

C : C[z]m → T (Pm+2)

を誘導する．ただし，T (Pm+2)は理想 (m+ 2)角形 Pm+2 の Teichmüller空間とする．したがっ
て，多項式 pに対して，2次微分 p(z) dz2 に付随する R-木 T (p)を取る写像

T : C[z]m → Treem+2

は写像 C : C[z]m → T (Pm+2)と漸近的に等しいと期待できる．したがって，前段階として写像 T

の漸近的な振る舞いを調べる．なお，正則 2次微分と付随する R-木の対応についても，(1.2)に準
ずるような主要部を固定するごとの対応があることが [GW19]により示されている．

2.3 距離空間の収束
距離空間の収束について基本的な事項を述べる．距離空間 (X, d) と正の実数 λ > 0 に対して，
距離関数を λ倍して得られる距離空間 (X,λd)を単に λX と書くことにする．

Definition 2.1. 距離空間X の部分集合 Aが ε-稠密であるとは，Aの ε-近傍がX を包むときに
いう．距離空間 X,Y の間の ε-関係とは，部分集合 R ⊂ X × Y であって，次の条件を満たすもの
である：

• prX(R) ⊂ X, prY (R) ⊂ Y はそれぞれ ε-稠密な部分集合である．
• (x1, y1), (x2, y2) ∈ Rのとき，|dX(x1, x2)− dY (y1, y2)| < εが成り立つ．

距離空間X と Y の間の ε-関係 Rが全射であるとは，prX : R → X, prY : R → Y がそれぞれ全射
であるときにいう．X と Y の間に ε-関係が存在するとき，X ∼ε Y と表し，全射な ε-関係が存在
するとき X 'ε Y と表す．X と Y の間のGromov-Hausdorff距離を

DH(X,Y ) = inf{ε | X 'ε Y }

で定義する．

Definition 2.2 (Gromov-Hausdorff 収束). 距離空間の列 Xn が距離空間 X に Gromov-

Hausdorff収束するとは，任意の ε > 0に対してN ∈ Nが存在して n ≥ N のときDH(Xn, X) <

εが成立するときにいい，このとき Xn
GH−−→ X と表す．

Definition 2.3. 点付き距離空間の列 (Xn, xn) (xn ∈ Xn)が，点付き距離空間 (X,x)に点付き
Gromov-Hausdorff収束するとは，任意の ε > 0と任意の r > 0を固定するとき，十分大きい



n ∈ Nに対して B̄(xn, r) ⊂ Xn と B̄(x, r) ⊂ X の間の ε-関係 Rn が存在して，(xn, x) ∈ Rn とな
るときにいう．また，このとき，(Xn, xn)

p.GH−−−→ (X,x)と表す．

3 R-木の幾何的極限
3.1 高いスケーリングオーダー
C係数多項式 p, q の次数をそれぞれm,n (m > n)とし，

p(z) = amzm + am−1z
m−1 + · · ·+ a0, q(z) = bnz

n + bn−1z
n−1 + · · ·+ b0

とする．ただし，am 6= 0, bn 6= 0である．Affine ray {T (p + tq)}t>0 のスケーリング極限を考え
る上では，パラメータ tを取り替えて {T (p+ tm−nq)}t>0 としたほうが計算上都合がよい．
まず，スケーリングオーダーが高いとき極限は次のようになる．

Theorem 3.1. α > m+2
2 とする．距離空間の列 {T (p+ tm−nq)}t>0 に対して，t → ∞のとき，

t−αT (p+ tm−nq)
GH−−→

{
T (amzm) α > m+2

2

T (amzm + bnz
n) α = m+2

2

が成り立つ．

この結果は次のように解釈できる．スケーリングオーダー α が m+2
2 より大きい場合，スケー

リングにより空間が縮まる速度が距離空間 T (p + tm−nq) の発散の速度を上回るため，一点から
(m+ 2)本の無限辺が出ているような自明な木が極限として現れる．非自明な木が極限として現れ
る上限のオーダー α = m+2

2 であり，退化した理想多角形の “境界”をつなぐ弧の長さの発散オー
ダーとみなせるため，α = m+2

2 での極限は，Thurston境界としての収束を表している．

3.2 零点の挙動
次に，スケーリングオーダー αが m−n

2 < α < m+2
2 を満たすとき，対応する幾何的極限につい

て考える．Affine ray p+ tm−nq の零点の一つを ζ(t)とするとき，tが十分大きければ，ζ(t)はな
めらかな曲線を描く．このとき，ζ(t)の挙動は q の零点に収束するか，∞に発散するかのいずれ
かである．R-木としての構造は実質的には頂点の間の距離によって決まるので，0 ∈ Cを起点とし
て取り

d(t) := dhp+tm−nq(0, ζ(t))

の発散のオーダーを考えることで，非自明な収束をしているかが判定できる．Theorem 3.1 によ
り，発散する零点 ζ(t)に対して，一般には d(t) ∼ t

m+2
2 (t → ∞)であるが，特殊な p, qそして ζ(t)

に対しては，d(t)の発散のオーダーが t
m+2

2 よりも小さくなることが観察できる．



発散する零点 ζ(t)は ζ ∈ {amzm−n + bn = 0}を分枝として選ぶことにより一つ決まる．すなわ
ち，ζ ∈ {amzm−n + bn = 0}が存在して

ζ(t)

tζ
→ 1 (t → ∞)

となる．ζ ∈ {amzm−n + bn = 0}を分枝として選んだときの ζ(t)に対する d(t)を dζ(t)と表す．

Definition 3.2. 組 (p, q, ζ)に対する i番目条件 (i-th condition)を

•（i = 0のとき）amζm+2 > 0かつ bnζ
n+2 < 0，

•（0 < i ≤ mのとき）am−iζ
m−i+2 ∈ Rかつ bn−iζ

n−i+2 ∈ R

で定める．ただし，j < 0のとき bj = 0とする．次に自然数 N(p, q, ζ)を
N(p, q, ζ) = min{k ∈ {0, 1, 2, . . . ,m} | (p, q, ζ)は k 番目条件を満たさない }

として定義する．

Theorem 3.3. N(p, q, ζ) = N とする．0 ≤ N ≤ bn/2cのとき，ある fp,q,ζ : [0, 1] → Rが存在
して

t−
m−2N+2

2 dζ(t) →
∫ 1

0

fp,q,ζ(s) ds (t → ∞) (3.1)

が成り立つ．ここで，fp,q,ζ は p, q, ζ によって決まる関数である．

N ≥ 2のとき N(p, q, ζ) = N であるという条件は ζ(t)の t → ∞における漸近展開

ζ(t) = ζt+ c1 +
c2
t
+ · · ·

の係数について c1, . . . , cN−1 ∈ Rζ を満たすことを保証する．

3.3 低いスケーリングオーダー
Definition 3.2 において，0 番目条件を満たす ζ ∈ {amzm−n + bm = 0} は存在しないとき，

(p, q)は genericであるということにする．Genericな (p, q)に対しては，任意の発散零点 ζ(t)に
対して，dζ(t) ∼ t

m+2
2 となり，収束零点については dζ(t) ∼ t

m−n
2 であるから，m−n

2 < α < m+2
2

をみたす αについて

t−α(T (p+ tm−nq), πt(0))
p.GH−−−→ (T (bnz

n), π(0)) (3.2)

となる．ここで πt : C → T (p + tm−nq), π : C → T (bnz
n)はそれぞれの collapsing mapである．

m−n
2 < α < m+2

2 をみたす αに対して，(3.2)が成り立つとき，(T (p+tm−nq), πt(0))は自明な収束
をするといい，そうでないとき非自明な収束をするという．点付きGromov-Hausdorff収束を考え
るのは，0 ∈ Cから R-treeの頂点 πt(ζ(t))までの距離の発散のオーダーが tα (m−n

2 < α < m+2
2 )

を超え，全体の Gromov-Hausdorff収束は期待できないためである．
Theorem 3.3により，genericでない状況では，非自明な収束が引き起こされることがわかる：



Corollary 3.4. 自然数 N は 1 < N ≤ bn/2cを満たすとする．m,n次多項式の組 (p, q)に対し
て，N(p, q, ζ) = N をみたす ζ ∈ {amzm−n+bm = 0}が存在するとする．このとき，α = m−2N+2

2

のオーダーでスケーリングされた R-木の列 t−α(T (p+ tm−nq), πt(0))は非自明な収束をする．

非自明な収束をするとき，その収束先の R-木は，T (bnz
n)において π(0)から距離が ∫ 1

0
fp,q,ζds

(Theorem 3.3) 離れた点に無限に伸びる辺が付け加わったものである．
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