Multi-scale R-tree limits for affine rays of polynomial

quadratic differentials
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[F,]: PQ(X) — 0T (S) #iFE 5. FAI2 XM DRT N2 b AZER Q(X) DBREa > <2

Mtz Q(X) = Q(X)UPQ(X) &KL, Teichmiiller Z¢f® Thurston 2 > %27 Mb%z T(S) &
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D m REHER 2 XYY p(z) dz? LT, C LOKHERE d)): Cx C— Ry

dy(z1,20) =

/: Re(y/pdz)
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Definition 2.1. FFEEZEM X OEDEEG AP - THETH 2 21E, AD e-iffED X 20 L T
W, HEEZER XY OO e-BfREiE, MARERC X XY THoT, XOFKHZHIZTHD
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o (z1,y1),(x2,y2) E RDE X |dx (21, 22) — dy (y1,y2)| < € DI D 3LD.

HEEZEM X 2 Y OO e-BR RBELETH S 213, pry: R — X,pry: R — Y BZzheh2sht
THHLEIIWVI. X &Y ORIC e-BIRPEET L X, X ~. Y ERL, 2R BRI EE
T2 X~ Y eET. X Y O Gromov-Hausdorff EEEt %
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TEHT 5.

Definition 2.2 (Gromov-Hausdorff I¥3). FEEEZZR O] X, I FHEEZZR X 12 Gromov-
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T(ap2™ + by2") o = 7142

T (p 4+t "g) < {
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Definition 3.2 IZBWT, 0 FHKHFZmMZT ¢ € {amz™ "+ by = 0} FFELRVE X,
(p,q) 1 generic TH 2 & \W\W5 Z 2T 5. Generic & (p,q) WX LTIE, EREOFERER ((t) I
KMUT, de(t) ~ ™27 £, PRBEMICOWTE dey ~ 177 THEHS, M0 < o < M2

BATZT alZDoONWT

(T (p+ ™ "), m(0)) 25 (T(b,2"), 7(0)) (3.2)

&%, ZZTCTm:C—o>Tp+t""q),n: C— T(byz") IZZNZND collapsing map TH 5.
Mot << M2 BB T LT, (3.2) BED DL E, (T(p+t™ "g), m(0)) (X BRI
AV, 25 ThVWe ZIEEARICRE T2 WS, mffE Gromov-Hausdorff IR % &
20D1%, 0€C 25 R-tree DIER m(C(t)) FTOMHMOFEBD A — KX =23t (252 < a < TF2)
ZHZ, KD Gromov-Hausdorff [NRIZHIFRFTE R WD TH 3.
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Corollary 3.4. HAB N 31 < N < |n/2] Zifil=F 5%, m,n XKZHEROM (p,q) ITHL
T, Np.q,Q) = N 257F (€ {amz™ "+by =0} BEET LTS, ZOLE, o= 2042
DA =X —TRY =) ¥ 7 4 RADI (T (p+t77"q), m(0)) BIEWBIHE T 2.

%E%EW%%?%&%,%@Wﬁ%@&ﬁ@,ﬂmquﬁmfﬂmﬁaﬁ%ﬁﬁﬁmds
(Theorem 3.3) BN 7z RUCIEIRICH T 2 0MF I MDD o7 DTH 5.
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