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1. 序：主結果
1次元複素力学系理論の、正則微分同相の不動点に関する所謂 parabolic linearization

の理論をやや精密に観察することにより、実 1次元の実解析的な微分同相の不動点の
周囲の領域と微分同相の構造に関する、単純ではあるが強力な構造が導かれる。この
観察結果は、複素1次元力学系理論における結果としてもとらえることができ、実1次
元の結果としてみた場合を複素化を経由せずに証明することは難しそうである。また、
C∞-級の微分同相に対しては、双曲的不動点以外では成り立たない結果である。
余次元 1横断的実解析的葉層構造論への強い応用があるので、その核心部分も紹介
する。また、さらなる応用の見つかっていない帰結を一つ紹介する。この帰結の主張
が空でないことは、葉層構造論への応用が保証している。
本稿と講演の内容は森田茂之氏（東京大学、東京科学大学名誉教授）、北野晃朗氏

（創価大）との共同研究 [KMM] に基づく。

1-1. 実解析的微分同相として
先ず、実解析的微分同相としての主張を述べる。
f : (R, 0) → (R, 0) を 実 1次元の実解析的微分同相芽で向きを保つもの、すなわち、
不動点 x = 0 における微分係数 f ′(0) > 0 とする。

領域の形式的拡大 　主張を述べやすくするために、微分同相芽 f に対して、定義域、
値域の正負の部分を形式的に拡大する。f が (−ε, ε)（ε > 0）で定義されており、原点
0 以外に不動点はないものとする。T : R → R は平行移動 T (x)=x+1 を表す。また、
(0, ε), (−ε, 0) への f の制限をそれぞれ f+, f− と表し、ϵ = ϵ± = ±1 を f±(x) − x の
符号とする。この時、f+ と T+ = T ϵ+ に関して同変な解析的埋め込みφ+ : (0, ε) → R
をf の正の側の形式的拡大という。負の側に対しても同様である。
円周 S1 の実解析構造が一意的であること ∗に注意すると、f+ の軌道空間 S1 ∼=

(0, ε)/f+ の普遍被覆をとれば形式的拡大の存在が分かる。

定理 R (Kitano-Mitsumatsu-Morita, [KMM])†

上のような解析的微分同相 f と、正・負の側の形式的拡大 φ+ : (0, ε) → R = M+ お
よびφ− : (−ε, 0) → R = M− に対し、T+ と T− に関して同変な実解析的微分同相
Φ = Φf : M− → M+ が一意的かつ標準的に存在する。
　

微分同相 f が x = 0 に於いて偶数次で恒等写像 id に接している場合、例えば、
f(x) = x + x3 であれば原点は repelling な不動点であるから、正・負のどちらの側で
本研究は科研費 (課題番号:21H00985, 23K20798, 21K18579, 19K03505)の助成を受けたものである。

∗この古典的事実も恐らく複素化しなければ証明できないであろう。
†Andres Navas もこの事実を知っていた。(@2024年 12月CIRM(Luminy, France))



も backward orbits は原点に集積し、定理にある対応 Φ は形式的拡大を使わなくても
(−ε, 0)と (0, ε)の対応として直接記述できる。一方、f(x) = x+x2 の様に f が奇数次
で恒等写像に接している場合には、正の側で repelling であれば負の側では attracting

であるから、原点に近い点に対しては相手側では遠い点が対応し、直接に (−ε, 0) と
(0, ε) の対応としては記述しにくいため形式的拡大を導入して結果を述べた。

1-2. Parabolic Linearization と複素1次元力学系としての主張
f(x) = ax+(高次の項) (a 6= 1, > 0)の場合、つまり、双曲的不動点の場合も基本的に
同様であるが、簡単のため、f(x) = x+(2次以上の項)の場合を考え、変数を複素化して
複素１変数の原点を不動点に持つ正則微分同相f : (C, 0) → (C, 0) f(z) = z+bzn+1+(高
次の項), (b 6= 0, n ≥ 1) として調べる。釈迦に説法で恐縮ではあるが、この f(z) に対
する parabolic linearization を先ずは復習する。（Milnor の教科書 [Mi] と Shishikura

[Sh] に従う。）
註：　f(z) = z + bzn+1+(高次の項), (b 6= 0 ∈ C, n ≥ 1) という形をした正則微分同相
(芽)から始めても同様である。
必要ならば f を f−1 で取り替え、適当に共役をとることにより、f は f(z) = z +

zn+1 + az2n+1+ (高次の項) （Takens 標準形 [Ta]）と仮定できる。arg z = ikπ/n は
k = 0, 1, · · · , 2n− 1 の順に repelling direction, attracting direction として交互に並び、
各 direction を含むように repelling domain, attracting domain が交互に交わりながら
並ぶ。これらは repelling petal, attracting petal と呼ばれ、P0, P1, · · · と表す。各 Pj

は隣の Pj−1, Pj+1 とのみ交わり、P0 ∪ · · · ∪P2n−1 ∪ {0} は C における原点の近傍とな
る。実際、w = I(z) = −z−n により f を w-座標で書き換える、つまり I での共役の
適当な枝をとると、I ◦ f ◦ I−1 = f̃ は適当な定数 a により

f̃(w) = w + 1 +
a

w
+O(

1

w2
) as |w| → ∞

となり、これに対して十分大きな正定数 b によりw-平面の領域 Ω± をΩ± = {w ∈ C |
±Rew < |Imw| − b} とおけば、I−1(Ω±) の各連結成分として偶/奇数番目の petal が
得られる。

repelling petal PR [resp. attracting petal PA] は Ω+ [resp. Ω−] の
w = I(z) = −(z)−n による逆像の n 個ある成分のうちの一つ。
水平線で影を施した領域が Ω+, 斜線の領域は repelling petals.



各 petal ごとに w-平面の領域 Ω± に f の作用を書き写して f̃ と表すと、f̃ の作用は
漸近的に |w| → ∞ のとき f̃(w) = w + 1 に収束する。このことより、各 petal には f

の作用が “+1-平行移動”に見える affine 構造 ((C,+)-torsor)が定まり、これをFatou

座標とよぶ。
隣り合う petals の交わりの部分（図の影の部分）での点が定める petal 同士の間の
写像は一般にはこの affine 構造を保たないが、エンド（w-座標で見ると Im → ∞, z-

座標では → 0）ではこの点変換が affine 写像に収束し、隣り合う petal 同士の affine

写像が定まる (定理 C, 1))。P0 と P1, P1 と P2, · · · , P2n−1 と P0 と一周ぐるりとこの
同一視を繰り返して元に戻ると，affine 自己同型 (holonomy)であるが恒等写像とは限
らず、平行移動の値ホロノミー H ∈ C が f の一つの不変量となる。

定理 C([KMM])　
f(z) を f(z) = z + bzn+1+(高次の項), (b 6= 0 ∈ C, n ≥ 1) という形をした正則微分
同相 (芽)、即ち、原点0を放物的固定点にもつ複素1次元正則局所微分同相とする。
1) 隣り合う petal の間に affine (同相)写像が定まる。
2) f が実解析的の場合、holonomy の値 H は純虚数である。

註：　今のところ、この対応の（定理 R の場合でも）より分かり易い記述が見当たら
ない。恐らく、「共役不変」により特徴づけられるであろう。

定理 C ⇒ 定理 R

実解析の場合、1周するのではなく、P0, P1, P1, · · · , Pn とP0, P2n−1, P2n−2, · · · , Pn を
複素共役として比較すれば、定理 R を得る。

2. 定理 C の証明の概略と図解
各 Pj を f の作用で割った商空間 Ej = Pj/f |Pj

は Ecalle cylinder と呼ばれ、C/Z に正
則同値であり、f の作用は被覆 C = Ẽj では w̃ 7→ w̃+ 1 に一致する。w-座標からみる
と、Ej = Ω±/f̃j とも見做せる。各 petal Pj の Fatou 座標が w̃ に他ならない。

斜線による影がついている領域が Ecalle clinder E1, E2 の基本領域。
灰色の領域が二つの petal P1 と P2 の共通部分。
w-座標では Imw → −∞ の方向に広がっている。



Ecalle cylinder Ej
∼= C/Z の二つのエンドは −

√
−1∞-end と√

−1∞-end に明確に
区別される。Pj−1 と Pj の交わりに従い、Ecalle cylinder 同士の交わりが誘導される
が、 E0 の

√
−1∞-end とE1 の

√
−1∞-end が交わり、E1 の −

√
−1∞-end は E2 の

−
√
−1∞-end と交わる。これらの交わりは実際 end (の付近)では (定義される限りは)

双正則である。各 end の１点コンパクト化は C の原点の近傍に標準的に双正則である
から、この対応はコンパクト化に拡張し、 C の座標 ζ で見るとϕj(ζ) = αjζ+(2次以
上の項) (ζ = exp(w̃/2πi)) となる。

Ecalle clinder E1, E2 の Im w̃ → −∞ のエンドの近傍には、
z-平面での tautological な、恒等写像による対応 ϕ2 があり、
ζ-座標では、原点まで正則に拡張する。
ϕ2 の線形部分を取り出せば、affine 対応が定まる。

2次以上の項が消えていれば対応は上で述べた affine 構造に関して同型である。元々
f が正則ベクトル場の time 1 写像として与えられていれば、affine 構造はベクトル場
によって与えられ、各 petal でも共通のものとなり、以下で述べることも自明に正し
い。（隣り合う petal 同士のn組総てにおいて 2次以上の項が消えていることと、f が
(局所的な) ベクトル場の積分で与えられることは同値である。）

Sequence of correspondences ϕj between Ecalle clinders Ej−1 and Ej.

ϕj は w̃-座標では、j が奇数なら{Imw̃：十分大}　で定まり、
j が偶数なら{−Imw̃：十分大}　で定まる。

そうでない場合は、一般に 2次以上の項が残り、対応が affine 構造を保たない。然し



乍ら、 1次の項のみを（つまり、対応のエンドでの極限を）φ(ζ) = αjζ として取り出せ
ば、affine 写像が隣あう Ecalle cylinder の間に定まり, リフトを取れば φ̃j(w̃) = w̃+ cj
として petal Pj−1 と Pj の間の affine 同型も定まる。P0 と P1, P1 と P2, · · · , P2n−1 と
P0 と一周ぐるりとこの同一視を繰り返して元に戻ると，affine 自己同型 (holonomy)で
あるが恒等写像とは限らず、平行移動の値 H ∈ C が f の一つの不変量となる。
正則ベクトル場の積分の場合は、このホロノミー H は双対１次微分形式の residue

に他ならない。従って、z-平面の原点の近傍から原点を除いた部分に、この affine 構造
の意味で“実部=一定’’により、実解析的な余次元１非特異葉層構造（横断的に (R,+)-

構造をもつ）が定まる。双対1-形式の線積分の実部だけを見ることに他ならない。f が
実解析的なものであれば、ホロノミー H は純虚数となるから、実際、原点を抜いた近
傍から R への submersion による葉層が得られたことになる。

問題　ホロノミーの値 H は f に対して連続にふるまうであろうか。f の恒等写像へ
の接触次数 n を固定して、{f | idC への接触次数 = n} のどのような位相に対して連
続となるであろうか。特に、ベクトル場の積分で得られるものに限ればホロノミー H

の値はそのベクトル場の双対正則 1-形式の residue に他ならない。正則ベクトル場の
Takens 標準形 [Ta] が

(zn+1 + αz2n+1 + h.o.t.)
∂

∂z
であれば、それが生成する微分同相 f(z) の Takens 標準形は

z + zn+1 + (α + (n+ 1)/2)z2n+1 + h.o.t.

となり、この時のホロノミー = residue は以下で与えられる、
H = −2πiα.

写像 Φf 自体についてはどのような連続性が期待されるであろうか。そもそも idC

への接触次数 n が奇数の場合は問題をどう定式化するべきか。

3. 葉層構造論への応用
以下では位相群 G に離散位相を与えたものを Gδ と記す。円周 S1 の微分同相群の
間の恒等写像 Diff ∞

+ (S1)δ → Diff ∞
+ (S1) のホモトピーファイバー Diff ∞

+ (S1) = {γ :

[0, 1] → Diff ∞
+ (S1) | γ(0) = id}/∼̇ は、所謂「葉層 S1-積」 E = B × S1 −→/// B の

構造群とみなされる。実はこの群は Diff ∞
+ (S1) の普遍被覆 ˜Diff ∞

+ (S1) に離散位相を
与えた群 ˜Diff ∞

+ (S1) δ に他ならない。また、この群はさらに、実数直線 R の向きを保
つ微分同相の群 Diff ∞

+ (R) における “+1平行移動”　 T : x 7→ x + 1 の中心化群　
{g ∈ Diff ∞

+ (R) | g(x + 1) = g(x) + 1} の離散化に他ならない。後で C∞ ではなく Cω

で考えるが、これらの事情は全く同様である。
葉層 S1-積 E = B×S1 −→/// B の全空間上の余次元 1葉層構造 F に対して、全空間か
らの、葉層構造の分類写像ϕF : E = B×S1 → BΓ1の随伴 B → Map(S1, BΓq) = ΛBΓ1

をB ˜Diff ∞
+ (S1) δ 上の普遍葉層 S1-積に対してとれば、Mather-Thurston 写像

MT : B ˜Diff ∞
+ (S1) δ → Λ(BΓ1)

が得られる。



Mather-Thurston の定理 (平坦S1-束の場合) ([Ma, Th])　
Mather-Thurston 写像はホモロジー群の間の同型を誘導する。

MT ∗ : H∗(B ˜Diff ∞
+ (S1) δ;Z)

∼=−→ H∗(Λ(BΓq);Z)

このS1-束の場合の Mather-Thurston の定理は森田 [Mo] により次の定理の証明に用
いられた。

定理（S. Morita, [Mo])　
C∞-級有向平坦円周束のオイラー類（ただし有理数係数で）の任意の冪 χk

Q ∈
H2k(BDiff ∞

+ (S1);Q) (k ∈ N)は非自明。

Mather-Thurston 写像の S1-Borel 商MT : BDiff ∞
+ (S1) → ΛBΓ

∞
1 //S1 もホモロ

ジー同値写像である。
一方、χk

Q の非自明性は、実解析的な平坦円周束に対しては k ≥ 2 で不明である。
Mather-Thurston の定理を証明するためには、手術や、特に fragmentation が必要
であるため、実解析的な場合に成り立つとは考え難いが、オイラー類の冪の問題など
を考察するうえでも手掛かりになることが期待されるので、Mather-Thruston 写像を
調べる。Mather-Thurston 写像の S1-Borel 商MT : BDiff ∞

+ (S1) → ΛBΓ
∞
1 //S1 も有

用なはずである。
横断的有向実解析的余次元 1葉層構造の分類空間 BΓ

ω

1 は Haefliger により K(π, 1)-

空間であることが知られており、その基本群 ΓH を Haefliger 群と呼ぶ。

定理（A. Haefliger, [H])

1) BΓ
ω

1 ' K(ΓH , 1) : ホモトピー同値
2) ΓH は連続濃度生成の完全群であり、Diff ω

+(R)∪Diff ω
+(R, 0) を自然に包含する。

補題（Folklore)　
離散群 G の分類空間の自由ループ空間 ΛBG の各弧状連結成分は g ∈ G の G にお
ける共役類 C〈g〉 に対応し、g の中心化群 C(g;G) の分類空間BC(g;G) にホモト
ピー同値である。

実解析的有向平坦円周束に付随する Mather-Thurston 写像とその S1-Borel 商を以
下の図式に示す。(すべてから B を取り除いて離散群の順同型の図式と見ても等価)

B ˜Diff ω
+(S

1) δ × S1 φF−−−→ BΓH

p̃ ↓≡

B ˜Diff ω
+(S

1) δ
MT−−−→ BC(γT ; ΓH) ⊂ ΛBΓH

p ↓≡ ↓
BDiff ω

+(S
1)δ

MT−−−→ B(C(γT ; ΓH)/〈γT 〉) = BC(γT ; ΓH)//S
1

定理（実解析的平坦S1-束の Mather-Thruston 写像, [KMM])　
上の図式のMT 及びMT はともにホモトピー左逆写像を許容する。

この定理の核心は、定理 R から導かれる次に定理にある。



定理 T（[KMM])　
T 2 = S1 × S1 上の非特異余次元 1横断的有向実解析的な葉層が左下の図の様に S1

上の葉層 S1-束であれば、ホロノミ―として Diff ω
+(S

1) の元が定まるが、右下の図
の様であっても同様に Diff ω

+(S
1) の元が定まる。

この定理 T もC∞-級のカテゴリーでは成り立ちようのないものである。

4. まだ役に立っていない応用
定理 R のもう一つ別の応用を述べる。但し、今のところこの結果が何に役立つのかが
分からない。
円周 S1 の向きを保つ実解析的微分同相 f ∈ Diff ω

+(S
1)δ は、不動点を有限個しか持

たず、もし不動点があれば、不動点の補集合は不動点の数と同じ個数の開区間であっ
て、各開区間 (円弧)は f で不変である。不動点を円順序に従って P1, P2, · · · , Pk, 各
回区間を Ji = (Pi, Pi+1 i = 0, · · · , k− 1 とする。定理 R は不動点 Pi の前後の f -同変
な実解析的同相Φi : Mi−1 → Mi を与えるので、Ψ(f) = Φk ◦ · · · ◦ Φ1 : M0 → M0 は
J0 ∼= R の f -同変実解析的微分同相を与える。実解析的に (M0, f) を (R, T ) と見直せ
ば、次が得られる。

S1 の実解析的微分同相 f が双曲的不動点を二つ持つ場合



系
上の操作により

Ψ : {Diff ω
+(S

1)の共役類} → { ˜Diff ω
+(S

1)の共役類}

が得られ、以下をみたす。
1) f ∈ Diff ω

+(S
1) が不動点を持たなければ Ψ(f) = idR.

2) f ∈ PSL(2;R) ⊂ Diff ω
+(S

1) であれば Ψ(f) = idR.

2’) f ∈ PSL(2;R)k であれば Ψ(f) = idR.

3) Ψ は全射。

Ψは決してリフトをとっているわけではない。1)は ‘定義’とすべきもの。PSL(2;R)k
はPSL(2;R) の k-重被覆（k ∈ N）。3）は定理 T による。
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