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ABSTRACT. In the boundary of the Mandelbrot set, we can find quasiconformal
copies of a Cantor Julia set which is a small perturbation of the Julia set of any
given parameter in the boundary of the Mandelbrot set. We can also find copies
that are images of the Julia sets by quasiconformal maps with dilatation arbitrarily
close to 1. This answers a question by Adrian Douady. Indeed, we can specify
the locations of such copies near the boundary of any small Mandelbrot set. If
we zoom in the middle part of such a copy, then we can find a certain nested
structure (“decoration”) and finally another “smaller Mandelbrot set” appears. A
similar nested structure exists in the Julia set for any parameter in the “smaller
Mandelbrot set”. All the parameters belonging to these quasiconformal copies in
the Mandelbrot set are semihyperbolic and this leads to the fact that the set of
semihyperbolic but non-Misiurewicz and non-hyperbolic parameters is dense with
Hausdorff dimension 2 in the boundary of the Mandelbrot set.

1. Introduction

Let Pc(z) := z2 + c (c ∈ C) and recall that its filled Julia set K(Pc) is defined by

K(Pc) := {z ∈ C | {P n
c (z)}∞n=0 is bounded}

and its Julia set J(Pc) is the boundary of K(Pc), that is, J(Pc) := ∂K(Pc). It is known
that J(Pc) is connected if and only if the critical orbit {P n

c (0)}∞n=0 is bounded and if J(Pc)
is disconnected, then it is a Cantor set. The connectedness locus of the quadratic family
{Pc}c∈C is the famous Mandelbrot set and we denote it by M :

M := {c ∈ C | J(Pc) is connected} = {c ∈ C | {P n
c (0)}∞n=0 is bounded}.

A parameter c is called a Misiurewicz parameter if the critical point 0 is strictly preperi-
odic, that is,

P k
c (P

l
c(0)) = P l

c(0) and P k
c (P

l−1
c (0)) 6= P l−1

c (0)

for some k, l ∈ N = {1, 2, 3, . . .}. For the basic knowledge of complex dynamics, we refer
to [Bea] and [Mi2].

Douady et al. ([D-BDS]) proved the following: in a neighborhood of the cusp point
c0 6= 1/4 in M , which is the root of primitive small Mandelbrot set, there is a sequence
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{Mn}n∈N of small quasiconformal copies of M tending to c0. Moreover each Mn is encaged
in a nested sequence of sets which are quasiconformally homeomorphic to the preimage
of J(P1/4+η) (for η > 0 small) by z 7→ z2

m
for m ≥ 0 and accumulate on Mn.

In this paper, firstly we generalize part of their results (Main Theorem, Theorems A and
C). Actually this kind of phenomena can be observed not only in a small neighborhood
of the cusp of a primitive small Mandelbrot set, that is, the point corresponding to a
parabolic parameter 1/4 ∈ ∂M , but also in every neighborhood of a point corresponding
to any c0 ∈ ∂M in a small Mandelbrot set. (For example, c0 = 1/4 ∈ ∂M can be replaced
by a Misiurewicz parameter c0 = i ∈ ∂M or a parabolic parameter c0 = −3/4 ∈ ∂M etc.)
More precisely, we show the following: take any small Mandelbrot set Ms0 (Figure 1-(1)))
and zoom in the neighborhood of c1 = s0 ⊥ c0 ∈ ∂Ms0 corresponding to c0 ∈ ∂M (Figure
1-(2) to (6))). Then we can find a subset J ′ ⊂ ∂M which looks very similar to J(Pc0)
(Figure 1–(6)). Zoom in further, then this J ′ turns out to be similar to J(Pc0+η) rather
than J(Pc0), where |η| is very small and c0+η /∈ M , because J ′ looks disconnected (Figure
1–(8), (9)). Furthermore, as we further zoom in the middle part of J ′, we can see a nested
structure which is very similar to the iterated preimages of J(Pc0+η) by z 7→ z2 (we call
these a decoration) (Figure 1–(10), (12), (14)) and finally another smaller Mandelbrot set
Ms1 appears (Figure 1–(15)). This is achieved by showing that Ms0 and its decoration are
the images of a certain model set by quasiconformal maps (Theorem A). Also we show
that for some of these quasiconformal maps the dilatations can be made arbitrarily close
to 1 (Main Theorem and Theorem C). This answers the first part of the “Final remarks”
in [D-BDS, p.35].

Secondly we show the following result for filled Julia sets (Theorems B and D): take
a parameter s1 ⊥ c (c ∈ M) from the above smaller Mandelbrot set Ms1 and look at
the filled Julia set K(Ps1⊥c) and its zooms around the neighborhood of 0 ∈ K(Ps1⊥c).
Then we can observe a very similar nested structure to what we saw as zooming in the
middle part of the set J ′ ⊂ ∂M (see Figure 2). This is again explained by showing that
these structures are the images of a certain model set by quasiconformal maps (Theorem
B). Also we show that for some of the quasiconformal maps dilatations can be made
arbitrarily close to 1 (Theorem D).

Finally we show that all the parameters belonging to the decorations are semihyperbolic
and also the set of semihyperbolic but non-Misiurewicz and non-hyperbolic parameters are
dense in the boundary of the Mandelbrot set (Corollary E). This together with Theorem
C leads to the following direct and intuitive explanation for the fact that the Hausdorff
dimension of ∂M is equal to 2, which is a famous result by Shishikura ([Sh]): this is
because we can find a lot of almost conformal images of Cantor quadratic Julia sets
whose Hausdorff dimension are arbitrarily close to 2, which are known to exist ([Sh]).

2. The Model Sets and the Statements of the Results

Notation. We use the following notation for disks and annuli:

D(R) := {z ∈ C | |z| < R}, D := D(1), D(α,R) := {z ∈ C | |z − α| < R},
A(r, R) := {z ∈ C | r < |z| < R} (0 < r < R).

We mostly follow Douady’s notations in [D-BDS] in the following.
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(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

(10) (11) (12)

(13) (14) (15)

Figure 1. Zooms around a Misiurewicz point c1 = s0 ⊥ c0 in a primitive small
Mandelbrot set Ms0 , where c0 is a Misiurewicz parameter satisfying Pc0(P 4

c0(0)) =

P 4
c0(0). After a sequence of nested structures, another smaller Mandelbrot set

Ms1 appears in (15). Here, s0 ≈ 0.3591071125276155 + 0.6423830938166145i,
c0 ≈ −0.1010963638456221 + 0.9562865108091415i, c1 ≈ 0.3626697754647427 +
0.6450273437137847i and s1 ≈ 0.3626684938191616 + 0.6450238859863952i. The
widths of the figures (1) and (15) are about 10−1.5 and 10−11.9, respectively.
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(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

(10) (11) (12)

Figure 2. Zooms around the critical point 0 in K(Ps1⊥c) for s1 ⊥ c in Ms1 ,
which is the smaller Mandelbrot set in Figure 1–(15) and c ∈ M is the parameter
for the Douady rabbit. s1 ≈ 0.3626684938191616 + 0.6450238859863952i, c ≈
−0.12256 + 0.74486i and s1 ⊥ c ≈ 0.3626684938192285 + 0.6450238859865394i.

Models. Let σ /∈ M . In this case J(Pσ) is a Cantor set which does not contain 0. Now
take two positive numbers ρ′ and ρ such that

J(Pσ) ⊂ A(ρ′, ρ) (ρ′ < ρ).

We define the rescaled Julia set Γ0(σ) by

Γ0(σ) := J(Pσ)×
ρ

(ρ′)2
=

{
ρ

(ρ′)2
z
∣∣ z ∈ J(Pσ)

}
such that Γ0(σ) is contained in the annulus A(R,R2) with R := ρ/ρ′. In [D-BDS],
Douady used the radii of the form ρ′ = R−1/2 and ρ = R1/2 for some R > 1 such that
Γ(σ) = J(Pσ) × R3/2 is contained in A(R,R2). In this paper, however, we need more
flexibility when we are concerned with the dilatation.



5

Let Γm(σ) (m ∈ N) be the inverse image of Γ0(σ) by z 7→ z2
m
, the m-th iteration of

z 7→ z2. Then Γm(σ) (m = 0, 1, 2, . . .) are mutually disjoint, because we have

Γ0(σ) ⊂ A(R,R2), Γ1(σ) ⊂ A(R1/2, R), Γ2(σ) ⊂ A(R1/4, R1/2), · · · .

For another parameter c ∈ M , let Φc : C∖K(Pc) → C∖D be the Böttcher coordinate,
i.e., Φc is a conformal isomorphism with Φc(Pc(z)) = (Φc(z))

2. (In this paper, following
[D-BDS], we use the term conformal isomorphism, or simply isomorphism, to refer to
a biholomorphic mapping.) Let ΦM : C ∖ M → C ∖ D be the conformal isomorphism
defined by ΦM(c) := Φc(c), which satisfies the condition ΦM(c)/c → 1 as |c| → ∞ (see
[DH1]). Now define the model sets M(σ) and Kc(σ) as follows (see Figure 3):

M(σ) := M ∪ Φ−1
M

( ∞⋃
m=0

Γm(σ)
)
, Kc(σ) := K(Pc) ∪ Φ−1

c

( ∞⋃
m=0

Γm(σ)
)
.

We call M(σ) a decorated Mandelbrot set, M(σ)∖M = Φ−1
M

(⋃∞
m=0 Γm(σ)

)
its decoration

and M ⊂ M(σ) the main Mandelbrot set of M(σ). Also we call Kc(σ) a decorated filled

Julia set and Kc(σ)∖K(Pc) = Φ−1
c

(⋃∞
m=0 Γm(σ)

)
its decoration. We will apply the same

terminologies to the images of M(σ) or Kc(σ) by quasiconformal maps.

Since the sets Γm(σ), M(σ) and Kc(σ) depend on the choice of ρ′ and ρ, we denote them
by Γm(σ)ρ′,ρ, M(σ)ρ′,ρ, and Kc(σ)ρ′,ρ respectively when we emphasize the dependence.

Quasiconformal copies. Let X and Y be non-empty compact sets in C. We say that X
appears (K-)quasiconformally in Y or Y contains a (K-)quasiconformal copy of X if there
exists a (K-)quasiconformal map χ on a neighborhood of X such that χ(X) ⊂ Y and
χ(∂X) ⊂ ∂Y . Note that the condition χ(∂X) ⊂ ∂Y is to exclude the case χ(X) ⊂ int(Y ).

Main Theorem. For any c0 ∈ ∂M and any small ε > 0 and κ > 0, there exists a
parameter

σ ∈ D(c0, ε)∖M

such that M contains a (1+κ)-quasiconformal copy of M(σ) = M(σ)ρ′,ρ for some ρ′ and
ρ. Moreover, one can find such a copy in any open disk intersecting with ∂M .

Since M(σ) contains the rescaled Julia set Γ0(σ) = J(Pσ)× ρ/(ρ′)2, we may say that the
Julia set J(Pσ) appears almost conformally in M .

Note that if K(Pc0) has empty interior (i.e., Pc0 has no parabolic basins nor Siegel
disks), then J(Pσ) tends to J(Pc0) in the Hausdorff topology as σ → c0. Even in the
case when the interior of K(Pc0) is non-empty, J(Pσ) is contained in the η-neighborhood
of K(Pc0), and the η-neighborhood of J(Pσ) contains J(Pc0) for any given η > 0 if σ is
sufficiently close to c0. See [Do]. This explains why we can find structures that resemble
the Julia set J(Pc0) everywhere in the boundary of the Mandelbrot set.

The Main Theorem will be restated and proved as Theorem C below, with a slightly
modified formulation.

Small Mandelbrot sets. For a given c0 ∈ ∂M , the locations of quasiconformal copies
of M(σ) in M as in the Main Theorem can be more precisely identified by introducing
the concept of the small Mandelbrot set. Let s0 6= 0 be a superattracting parameter such
that the period of the critical point 0 is more than one. By the Douady-Hubbard tuning



6

Figure 3. The first row depicts the decorated Mandelbrot set M(σ) for σ =
−0.10 + 0.97 i (close to the Misiurewicz parameter c0 ≈ −0.1011 + 0.9563 i, the
landing point of the external ray of angle 11/56) and R = 220. The second row
depicts the set

⋃
m≥0 Γm(σ). The third row depicts the decorated filled Julia set

Kc(σ) for c ≈ −0.123 + 0.745 i (close to the rabbit).

theorem (see [H, Théorème 1 du Modulation] and [Mi1]), there exists a unique compact
subset Ms0 of M associated with a canonical homeomorphism χs0 : Ms0 → M such that
χs0(s0) = 0. See Figure 4. We also denote Ms0 by s0 ⊥ M and call it the small Mandelbrot
set with center s0. Similarly, for c0 ∈ M , let s0 ⊥ c0 denote the parameter χ−1

s0
(c0) in Ms0 .

Figure 4. The original Mandelbrot set (left), a satellite small Mandelbrot set
(middle), and a primitive small Mandelbrot set (right). See Section 4 for the
dichotomy between satellite and primitive small Mandelbrot sets. The stars
indicate the central superattracting parameters.
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(i)

(ii)

(iii)

Figure 5. (i): The decorated Mandelbrot set M(σ) for σ = −0.77+0.18i (close
to the parabolic parameter c0 = −0.75. (ii) and (iii): Embedded quasiconformal
copies of M(σ) above near the satellite/primitive small Mandelbrot sets in Figure

4.

First we show the following theorem without including dilatation estimates, as an ex-
tension of the result by Douady et al. [D-BDS]:

Theorem A (Julia sets appear quasiconformally in M). Let c0 be any parameter in
∂M , and Ms0 be any small Mandelbrot set with center s0 6= 0. Let c1 := s0 ⊥ c0 ∈ ∂Ms0.
Then for any ε > 0 and ε′ > 0, there exists an η ∈ C with |η| < ε and c0 + η /∈ M such
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that M(c0+η) appears quasiconformally in M ∩D(c1, ε′). In particular, the Cantor Julia
set J(Pc0+η) appears quasiconformally in M .

This theorem provides an explanation for the images shown in Figure 1. The proof
generalizes the framework developed by Douady et al. [D-BDS], which only addresses
the case where c0 = 1/4 and focuses on the small Mandelbrot set Ms0 of particular
type. We also substitute their parabolic implosion technique with a shooting technique
at Misiurewicz parameters in our approach.

Next theorem is a dynamical counterpart of Theorem A:

Theorem B (Julia sets appear quasiconformally in K). Let M′ ⊂ M be the quasi-
conformal copy of M(c0 + η) in Theorem A, and Ms1 be the main Mandelbrot set of M′.
Then we have:

(1) For every c ∈ M , the set Kc(c0 + η) appears quasiconformally in K(Ps1⊥c), where
s1 ⊥ c ∈ Ms1. In particular, the Cantor Julia set J(Pc0+η) appears quasiconformally
in K(Ps1⊥c).

(2) There exists a neighborhood W of M′ such that the Cantor Julia set J(Pc0+η) appears
quasiconformally in K(Pσ) for any σ ∈ W .

Remark that the decoration of Kc(c0 + η) is conformally the same as that of M(c0 + η).
Item (1) of this theorem provides an explanation for the images shown in Figure 2. Item
(2) also explains the nested and complicated structure of ∂M presented later in Figure 6.
See Remark (2) below for more details.

Almost conformal copies. The following is a more detailed version of the Main Theo-
rem:

Theorem C (Almost conformal copies in M). Let c0 be any parameter in ∂M and B
any open disk intersecting with ∂M . Then for any small ε > 0 and κ > 0, there exist an
η ∈ C with |η| < ε and two positive numbers ρ′ and ρ with ρ′ < ρ such that c0+η /∈ M and
M(c0 + η)ρ′,ρ appears (1 + κ)-quasiconformally in M ∩B. In particular, M ∩B contains
a (1 + κ)-quasiconformal copy of the Cantor Julia set J(Pc0+η).

The proof relies on the method developed for Theorem A and on careful control of the
dilatations. As a by-product of the proof, we obtain a version of Theorem B corresponding
to Theorem C:

Theorem D (Almost conformal copies in K). Under the assumption of Theorem C,
the same statement as Theorem B holds with (1 + κ)-quasiconformality.

Semihyperbolicity and Hausdorff dimension. A quadratic polynomial Pc(z) = z2+c
(or the parameter c) is called semihyperbolic if

(1) the critical point 0 is non-recurrent, that is, 0 /∈ ω(0), where ω(0) is the ω-limit
set of the critical point 0 and

(2) Pc has no parabolic periodic points.

If Pc is semihyperbolic, then it is known that it has no Siegel disks nor Cremer points
([Ma], [CJY]). Moreover, the Julia set J(Pc) is measure 0 from the results by Lyubich
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([L1]) and Shishikura (unpublished), also by [CJY, p.2, Theorem 1.1]. Thus the semihy-
perbolic dynamics is relatively understandable. It is easy to see that if Pc is hyperbolic
then it is semihyperbolic. A well-known example of semihyperbolic but non-hyperbolic
parameter c is a Misiurewicz parameter. However, it is not straightforward to construct
explicit examples of semihyperbolic parameter c which is neither hyperbolic nor Misi-
urewicz. Next corollary shows that we can visually identify these parameters everywhere
in ∂M .

Corollary E (Abundance of semihyperbolicity). For every parameter c belonging
to the quasiconformal image of the decoration of M(c0 + η) in Theorems A and C, Pc is
semihyperbolic.

It also implies a well-known fact that the set of semihyperbolic parameters that are not
Misiurewicz nor hyperbolic is dense in ∂M .

Corollary E together with Theorem C explains the following famous result by Shishikura:

Theorem (Shishikura, 1998). Let

SH := {c ∈ ∂M | Pc is semihyperbolic},

then the Hausdorff dimension of SH is 2. In particular, the Hausdorff dimension of the
boundary of M is 2.

Explanation. For any δ > 0, there exists an open disk D intersecting with ∂M such
that all Julia sets corresponding to the parameters in D have the Hausdorff dimension
at least 2 − δ ([Sh, p.231, proof of Theorem B and p.232, Remark 1.1 (iii)]). Now apply
Theorem C with c0 ∈ ∂M ∩D and sufficiently small ε and κ such that c0 + η ∈ D ∖M
and thus we can find quasiconformal copies of J(Pc0+η) with Hausdorff dimension at least
2 − 2δ everywhere in ∂M . Then by Corollary E it follows that we can find a subset
of ∂M with Hausdorff dimension arbitrarily close to 2 and consisting of semihyperbolic
parameters. This implies that dimH(SH) = 2. ■
The novelty of our explanation is that it enables the visual identification of structures in
∂M with high Hausdorff dimensions.

Remark. (1) A similar result to (1) of Theorem B still holds even when c ∈ C ∖ M is
sufficiently close to M . Indeed, if c ∈ C ∖ M satisfies s1 ⊥ c ∈ W ∖ Ms1 , where W is
the neighborhood of M′ given in (2) of Theorem B, then the model set Kc(c0 + η) can
be defined by modifying the original definition for c ∈ M . We can also prove that a
Kc(c0 + η) appears quasiconformally in K(Ps1⊥c). We omit the details.

(2) Take a small Mandelbrot set Ms1 (e.g. Figure 1–(15) = Figure 6–(1)) and another
parameter c∗ ∈ ∂M (e.g. c∗ = 1/4 in Figure 6) and zoom in the neighborhood of
s1 ⊥ c∗. Then we see much more complicated structure than we expected as follows:
according to Theorem A, by replacing s0 with s1 and c0 with c∗, it says that M(c∗ + η)
appears quasiconformally in D(s1 ⊥ c∗, ε

′). This means that as we zoom in, we first see a

quasiconformal image of J(Pc∗+η∗), say J̃c∗+η∗ (e.g. “broken cauliflower”, when c∗ = 1/4).

But in reality as we zoom in, what we first see is a J̃c0+η0 (e.g. “broken dendrite”. See
Figure 6–(5)). This seems to contradict with Theorem A, but actually it does not. As

we zoom in further in the middle part of J̃c0+η0 , we see iterated preimages of J̃c0+η0 by
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(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

(10) (11) (12)

(13) (14) (15)

Figure 6. Zooms around a parabolic point s1 ⊥ c1 in a primitive small Mandel-
brot set Ms1 . After a sequence of complicated nested structures, another smaller
Mandelbrot set Ms2 appears ((15)).

z 7→ z2 (Figure 6–(6), (7)) and then J̃c∗+η∗ appears (Figure 6–(8)). After that we see

again iterated preimages of J̃c0+η0 by z 7→ z2 (Figure 6–(9), (10)) and then a once iterated

preimage of J̃c∗+η∗ appears (Figure 6–(11)). This structure continues and finally, we see
a smaller Mandelbrot set, say Ms2 (Figure 6–(15)). We can explain this phenomena as
follows: what we see in the series of magnifications above is a quasiconformal image of
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M(Kc∗+η∗(c0 + η0)), where

M(Kc∗+η∗(c0 + η0)) := M ∪ Φ−1
M

( ∞⋃
m=0

Γm(Kc∗+η∗(c0 + η0))
)
,

Γm(Kc∗+η∗(c0 + η0)) := the inverse image of Γ0(Kc∗+η∗(c0 + η0)) by z 7→ z2
m

.

Here M(Kc∗+η∗(c0 + η0)) is obtained just by replacing J(Pσ) with Kc∗+η∗(c0 + η0) in the
definition of M(σ). Although c∗ + η∗ /∈ M , Kc∗+η∗(c0 + η0) can be defined in the similar
manner. See the Remark (1) above. So what we first see as we zoom in the neighborhood

of s1 ⊥ c∗ is a quasiconformal image of Kc∗+η∗(c0 + η0), whose outer most part is J̃c0+η0

(= broken dendrite) and inner most part is J̃c∗+η∗ (= broken cauliflower). As we zoom in
further, we see quasiconformal image of the preimage of Kc∗+η∗(c0+ η0) by z 7→ z2, whose

inner most part is a once iterated preimage of J̃c0+η0 . After we see successive preimages
of Kc∗+η∗(c0 + η0) by z 7→ z2, a much smaller Mandelbrot set Ms2 finally appears. Since
Kc∗+η∗(c0 + η0) itself has a nested structure, the total picture has this very complicated
structure. The proof is similar to that of Theorem A.

(3) In [KK2] we present an alternative proof of Theorem A by using the parabolic im-
plosion technique. This proof can be easily adopted to the proof of Theorem C.
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