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This article is based on the joint research [KK1] with Tomoki Kawahira (JII*F-&#).

ABSTRACT. In the boundary of the Mandelbrot set, we can find quasiconformal
copies of a Cantor Julia set which is a small perturbation of the Julia set of any
given parameter in the boundary of the Mandelbrot set. We can also find copies
that are images of the Julia sets by quasiconformal maps with dilatation arbitrarily
close to 1. This answers a question by Adrian Douady. Indeed, we can specify
the locations of such copies near the boundary of any small Mandelbrot set. If
we zoom in the middle part of such a copy, then we can find a certain nested
structure (“decoration”) and finally another “smaller Mandelbrot set” appears. A
similar nested structure exists in the Julia set for any parameter in the “smaller
Mandelbrot set”. All the parameters belonging to these quasiconformal copies in
the Mandelbrot set are semihyperbolic and this leads to the fact that the set of
semihyperbolic but non-Misiurewicz and non-hyperbolic parameters is dense with
Hausdorff dimension 2 in the boundary of the Mandelbrot set.

1. INTRODUCTION

Let P.(z) := 2?4+ ¢ (c € C) and recall that its filled Julia set K(P,) is defined by
K(P.) :={2z€ C | {P*z2)}>2, is bounded}

and its Julia set J(P.) is the boundary of K(F,), that is, J(P.) := 0K (FP.). It is known
that J(P.) is connected if and only if the critical orbit { P*(0)}52, is bounded and if J(P.)
is disconnected, then it is a Cantor set. The connectedness locus of the quadratic family
{P.}cec is the famous Mandelbrot set and we denote it by M:

M :={ce C| J(P,) is connected} = {c € C | {P(0)}:2, is bounded}.

A parameter c is called a Misiurewicz parameter if the critical point 0 is strictly preperi-
odic, that is,
PE(P.(0)) = P:(0) and PH(P.7'(0)) # P.7'(0)
for some k, [ € N=1{1,2,3,...}. For the basic knowledge of complex dynamics, we refer
to [Bea] and [Mi2].
Douady et al. ([D-BDS]) proved the following: in a neighborhood of the cusp point

co # 1/4 in M, which is the root of primitive small Mandelbrot set, there is a sequence
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{M,} nen of small quasiconformal copies of M tending to ¢g. Moreover each M, is encaged
in a nested sequence of sets which are quasiconformally homeomorphic to the preimage
of J(Pijayy) (for n > 0 small) by z — 22" for m > 0 and accumulate on M,.

In this paper, firstly we generalize part of their results (Main Theorem, Theorems A and
C). Actually this kind of phenomena can be observed not only in a small neighborhood
of the cusp of a primitive small Mandelbrot set, that is, the point corresponding to a
parabolic parameter 1/4 € OM, but also in every neighborhood of a point corresponding
to any ¢y € OM in a small Mandelbrot set. (For example, ¢y = 1/4 € OM can be replaced
by a Misiurewicz parameter ¢y = i € M or a parabolic parameter ¢g = —3/4 € OM etc.)
More precisely, we show the following: take any small Mandelbrot set M, (Figure 1-(1)))
and zoom in the neighborhood of ¢; = sy L ¢y € M, corresponding to ¢y € OM (Figure
1-(2) to (6))). Then we can find a subset J' C dM which looks very similar to J(P.,)
(Figure 1-(6)). Zoom in further, then this J’ turns out to be similar to J(F,,1,) rather
than J(P,,), where |n]| is very small and ¢y+n ¢ M, because J' looks disconnected (Figure
1-(8), (9)). Furthermore, as we further zoom in the middle part of J', we can see a nested
structure which is very similar to the iterated preimages of J(P.yty) by z + 2% (we call
these a decoration) (Figure 1-(10), (12), (14)) and finally another smaller Mandelbrot set
M, appears (Figure 1-(15)). This is achieved by showing that M, and its decoration are
the images of a certain model set by quasiconformal maps (Theorem A). Also we show
that for some of these quasiconformal maps the dilatations can be made arbitrarily close
to 1 (Main Theorem and Theorem C). This answers the first part of the “Final remarks”
in [D-BDS, p.35].

Secondly we show the following result for filled Julia sets (Theorems B and D): take
a parameter s; L ¢ (¢ € M) from the above smaller Mandelbrot set M, and look at
the filled Julia set K(P;, ,.) and its zooms around the neighborhood of 0 € K(FP;, 1.).
Then we can observe a very similar nested structure to what we saw as zooming in the
middle part of the set J' C M (see Figure 2). This is again explained by showing that
these structures are the images of a certain model set by quasiconformal maps (Theorem
B). Also we show that for some of the quasiconformal maps dilatations can be made
arbitrarily close to 1 (Theorem D).

Finally we show that all the parameters belonging to the decorations are semihyperbolic
and also the set of semihyperbolic but non-Misiurewicz and non-hyperbolic parameters are
dense in the boundary of the Mandelbrot set (Corollary E). This together with Theorem
C leads to the following direct and intuitive explanation for the fact that the Hausdorft
dimension of OM is equal to 2, which is a famous result by Shishikura ([Sh]): this is
because we can find a lot of almost conformal images of Cantor quadratic Julia sets
whose Hausdorff dimension are arbitrarily close to 2, which are known to exist ([Sh]).

2. THE MODEL SETS AND THE STATEMENTS OF THE RESULTS

Notation. We use the following notation for disks and annuli:
D(R)={z€C||z| <R}, D:=D(), D(a,R):={z€C||z—a| <R},
A(r,R) ={2€C|r<|z| <R} (0<r<R).

We mostly follow Douady’s notations in [D-BDS] in the following.



FIGURE 1. Zooms around a Misiurewicz point ¢; = sy L ¢g in a primitive small
Mandelbrot set Mj,, where ¢y is a Misiurewicz parameter satisfying P, (P (0)) =
Pét(O). After a sequence of nested structures, another smaller Mandelbrot set
My, appears in (15). Here, so ~ 0.3591071125276155 + 0.6423830938166145¢,
co ~ —0.1010963638456221 + 0.95628651080914157, c1 ~ 0.3626697754647427 +
0.6450273437137847¢ and s1 ~ 0.3626684938191616 + 0.6450238859863952¢. The
widths of the figures (1) and (15) are about 107'® and 10~ respectively.



FIGURE 2. Zooms around the critical point 0 in K(Ps, 1) for s; L ¢ in My,
which is the smaller Mandelbrot set in Figure 1-(15) and ¢ € M is the parameter
for the Douady rabbit. s; ~ 0.3626684938191616 + 0.6450238859863952i, ¢ ~
—0.12256 + 0.74486¢ and s; L ¢ =~ 0.3626684938192285 + 0.64502388598653944.

Models. Let o ¢ M. In this case J(F,) is a Cantor set which does not contain 0. Now
take two positive numbers p’ and p such that

J(P,) C A(p',p) (0" <p)
We define the rescaled Julia set T'y(o) by

p p
Lo(o) == J(P,) % = zzEJPa}
o) = I x s = {7 = 9P
such that Ty(o) is contained in the annulus A(R, R?) with R := p/p’. In [D-BDS],
Douady used the radii of the form p' = R~'/2 and p = R'/? for some R > 1 such that
I'(0) = J(P,) x R*? is contained in A(R, R?). In this paper, however, we need more
flexibility when we are concerned with the dilatation.
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Let I',,(0) (m € N) be the inverse image of T'g(0) by z + 22", the m-th iteration of
2+ 2% Then T, (o) (m =0, 1, 2, ...) are mutually disjoint, because we have

Io(0) € A(R, R?), I'1(0) C A(RY? R), Ty(o) C A(RY* RY?), ...

For another parameter ¢ € M, let ®. : C~ K(P.) — C~ D be the Bottcher coordinate,
i.e., ®. is a conformal isomorphism with ®.(P.(2)) = (®.(2))?. (In this paper, following
[D-BDS]|, we use the term conformal isomorphism, or simply isomorphism, to refer to
a biholomorphic mapping.) Let &5, : C~\ M — C ~ D be the conformal isomorphism
defined by ®,(c) := ®.(c), which satisfies the condition ®/(c)/c — 1 as |¢| — oo (see

[DH1|). Now define the model sets M(o) and K.(o) as follows (see Figure 3):
M(o) = MU @;j( U Fm(0)>, K.(0) := K(P.) U @;1( U Fm(a)>.
m=0 m=0

We call M(0) a decorated Mandelbrot set, M(o)~ M = ®,} ( U, Fm(0)> its decoration
and M C M(o) the main Mandelbrot set of M(c). Also we call K. (o) a decorated filled
Julia set and K (o)~ K(P,) = ®_! < Ur_,r (0)) its decoration. We will apply the same

m=0"m
terminologies to the images of M(o) or K.(o) by quasiconformal maps.
Since the sets I',,(0), M(o) and K.(0) depend on the choice of p" and p, we denote them
by L'y (0) . ps M(0) p, and K.(c),, respectively when we emphasize the dependence.

Quasiconformal copies. Let X and Y be non-empty compact sets in C. We say that X
appears (K -)quasiconformally in Y or'Y contains a (K -)quasiconformal copy of X if there
exists a (K-)quasiconformal map x on a neighborhood of X such that y(X) C Y and
x(0X) C 9Y. Note that the condition x(0X) C 9Y is to exclude the case x(X) C int(Y).

Main Theorem. For any ¢o € OM and any small € > 0 and k > 0, there exists a
parameter

o € D(cy,e) M

such that M contains a (1+ k)-quasiconformal copy of M(c) = M(a),, for some p' and
p. Moreover, one can find such a copy in any open disk intersecting with OM .

Since M (o) contains the rescaled Julia set T'g(c) = J(P,) x p/(p')?, we may say that the
Julia set J(P,) appears almost conformally in M.

Note that if K(P.,) has empty interior (i.e., P., has no parabolic basins nor Siegel
disks), then J(P,) tends to J(FP,,) in the Hausdorff topology as ¢ — ¢y. Even in the
case when the interior of K (P,,) is non-empty, J(P,) is contained in the n-neighborhood
of K(P,,), and the n-neighborhood of J(FP,) contains J(P,,) for any given n > 0 if o is
sufficiently close to ¢. See [Do]. This explains why we can find structures that resemble

the Julia set J(P,,) everywhere in the boundary of the Mandelbrot set.

The Main Theorem will be restated and proved as Theorem C below, with a slightly
modified formulation.

Small Mandelbrot sets. For a given ¢y € OM, the locations of quasiconformal copies
of M(o) in M as in the Main Theorem can be more precisely identified by introducing
the concept of the small Mandelbrot set. Let sy # 0 be a superattracting parameter such
that the period of the critical point 0 is more than one. By the Douady-Hubbard tuning
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FIGURE 3. The first row depicts the decorated Mandelbrot set M(o) for o =
—0.10 + 0.974 (close to the Misiurewicz parameter ¢y ~ —0.1011 + 0.9563 7, the
landing point of the external ray of angle 11/56) and R = 220. The second row
depicts the set |J,,,~o 'm(c). The third row depicts the decorated filled Julia set
Ke(o) for ¢ = —0.123 4 0.74514 (close to the rabbit).

theorem (see [H, Théoreme 1 du Modulation] and [Mil]), there exists a unique compact
subset M, of M associated with a canonical homeomorphism g, : My, — M such that
Xso(S0) = 0. See Figure 4. We also denote My, by so L M and call it the small Mandelbrot
set with center sqg. Similarly, for ¢ € M, let sy L ¢o denote the parameter Xs,_ol(co) in Ms,.

[ ]

FIGURE 4. The original Mandelbrot set (left), a satellite small Mandelbrot set
(middle), and a primitive small Mandelbrot set (right). See Section 4 for the
dichotomy between satellite and primitive small Mandelbrot sets. The stars
indicate the central superattracting parameters.



FIGURE 5. (i): The decorated Mandelbrot set M (o) for o = —0.77+0.18i (close

to the parabolic parameter ¢g = —0.75. (ii) and (iii): Embedded quasiconformal
copies of M (o) above near the satellite/primitive small Mandelbrot sets in Figure
4.

First we show the following theorem without including dilatation estimates, as an ex-
tension of the result by Douady et al. [D-BDS]:

Theorem A (Julia sets appear quasiconformally in M). Let ¢y be any parameter in
OM, and My, be any small Mandelbrot set with center sy # 0. Let ¢ := sy L ¢o € OMj,.
Then for any € > 0 and " > 0, there exists an n € C with |n| < e and co+n ¢ M such
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that M(co+n) appears quasiconformally in M N D(cq,€’). In particular, the Cantor Julia
set J(Puy+y) appears quasiconformally in M.

This theorem provides an explanation for the images shown in Figure 1. The proof
generalizes the framework developed by Douady et al. [D-BDS]|, which only addresses
the case where ¢y = 1/4 and focuses on the small Mandelbrot set M, of particular
type. We also substitute their parabolic implosion technique with a shooting technique
at Misiurewicz parameters in our approach.

Next theorem is a dynamical counterpart of Theorem A:

Theorem B (Julia sets appear quasiconformally in K). Let M' C M be the quasi-
conformal copy of M(co+n) in Theorem A, and Mg, be the main Mandelbrot set of M'.
Then we have:

(1) For every ¢ € M, the set K.(co + 1) appears quasiconformally in K(Ps,,.), where
s1 L c e M. In particular, the Cantor Julia set J(Pe,1,) appears quasiconformally
m K(Plec>-

(2) There exists a neighborhood W of M’ such that the Cantor Julia set J(Pe,1y) appears
quasiconformally in K(P,) for any o € W.

Remark that the decoration of IC.(cy + 7) is conformally the same as that of M(co + 7).
Item (1) of this theorem provides an explanation for the images shown in Figure 2. Item
(2) also explains the nested and complicated structure of M presented later in Figure 6.
See Remark (2) below for more details.

Almost conformal copies. The following is a more detailed version of the Main Theo-
rem:

Theorem C (Almost conformal copies in M). Let ¢y be any parameter in OM and B
any open disk intersecting with OM. Then for any small € > 0 and k > 0, there exist an
n € C with |n| < € and two positive numbers p' and p with p' < p such that co+n ¢ M and
M(co+ 1)y, appears (1 + k)-quasiconformally in M N B. In particular, M N B contains
a (1 + k)-quasiconformal copy of the Cantor Julia set J(Peyiy).

The proof relies on the method developed for Theorem A and on careful control of the
dilatations. As a by-product of the proof, we obtain a version of Theorem B corresponding
to Theorem C:

Theorem D (Almost conformal copies in K). Under the assumption of Theorem C,
the same statement as Theorem B holds with (1 + k)-quasiconformality.

Semihyperbolicity and Hausdorff dimension. A quadratic polynomial P,(z) = 2% +c¢
(or the parameter c) is called semihyperbolic if

(1) the critical point 0 is non-recurrent, that is, 0 ¢ w(0), where w(0) is the w-limit
set of the critical point 0 and
(2) P. has no parabolic periodic points.

If P, is semihyperbolic, then it is known that it has no Siegel disks nor Cremer points
([Ma], [CJY]). Moreover, the Julia set J(FP,) is measure 0 from the results by Lyubich
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([L1]) and Shishikura (unpublished), also by [CJY, p.2, Theorem 1.1]. Thus the semihy-
perbolic dynamics is relatively understandable. It is easy to see that if P. is hyperbolic
then it is semihyperbolic. A well-known example of semihyperbolic but non-hyperbolic
parameter ¢ is a Misiurewicz parameter. However, it is not straightforward to construct
explicit examples of semihyperbolic parameter ¢ which is neither hyperbolic nor Misi-
urewicz. Next corollary shows that we can visually identify these parameters everywhere

in OM.

Corollary E (Abundance of semihyperbolicity). For every parameter ¢ belonging
to the quasiconformal image of the decoration of M(co +n) in Theorems A and C, P, is
semthyperbolic.

It also implies a well-known fact that the set of semihyperbolic parameters that are not
Misiurewicz nor hyperbolic is dense in OM.

Corollary E together with Theorem C explains the following famous result by Shishikura:

Theorem (Shishikura, 1998). Let
SH :={c€ 0M | P. is semihyperbolic},

then the Hausdorff dimension of SH is 2. In particular, the Hausdorff dimension of the
boundary of M is 2.

Explanation. For any 6 > 0, there exists an open disk D intersecting with M such
that all Julia sets corresponding to the parameters in D have the Hausdorff dimension
at least 2 — 0 ([Sh, p.231, proof of Theorem B and p.232, Remark 1.1 (iii)]). Now apply
Theorem C with ¢y € M N D and sufficiently small € and k such that ¢o +n € D~ M
and thus we can find quasiconformal copies of J(P,,4,) with Hausdorff dimension at least
2 — 24 everywhere in M. Then by Corollary E it follows that we can find a subset
of OM with Hausdorff dimension arbitrarily close to 2 and consisting of semihyperbolic
parameters. This implies that dimy(SH) = 2. |

The novelty of our explanation is that it enables the visual identification of structures in
OM with high Hausdorff dimensions.

Remark. (1) A similar result to (1) of Theorem B still holds even when ¢ € C ~\ M is
sufficiently close to M. Indeed, if ¢ € C \ M satisfies s; L ¢ € W ~ My,, where W is
the neighborhood of M’ given in (2) of Theorem B, then the model set K.(co + n) can
be defined by modifying the original definition for ¢ € M. We can also prove that a
Kc(co +n) appears quasiconformally in K (P, .). We omit the details.

(2) Take a small Mandelbrot set M, (e.g. Figure 1-(15) = Figure 6—(1)) and another
parameter ¢, € OM (e.g. ¢, = 1/4 in Figure 6) and zoom in the neighborhood of
s1 L ¢,. Then we see much more complicated structure than we expected as follows:
according to Theorem A, by replacing so with s; and ¢y with ¢,, it says that M(c. + )
appears quasiconformally in D(s; L ¢, ¢ ) This means that as we zoom in, we first see a
quasiconformal image of J (P, 4, ), say Jc*+77* (e.g. “broken cauliffower”, when ¢, = 1/4).
But in reality as we zoom in, what we first see is a jCOJmO (e.g. “broken dendrite”. See
Figure 6-(5)). This seems to contradict with Theorem A, but actually it does not. As
we zoom in further in the middle part of Jco+m, we see iterated preimages of JCO+770 by
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FIGURE 6. Zooms around a parabolic point s; L ¢1 in a primitive small Mandel-
brot set M, . After a sequence of complicated nested structures, another smaller
Mandelbrot set M, appears ((15)).

z + 2% (Figure 6-(6), (7)) and then jc*m appears (Figure 6-(8)). After that we see
again iterated preimages of jCOJr,m by z — 2% (Figure 6-(9), (10)) and then a once iterated
preimage of jc*m appears (Figure 6-(11)). This structure continues and finally, we see
a smaller Mandelbrot set, say M, (Figure 6-(15)). We can explain this phenomena as
follows: what we see in the series of magnifications above is a quasiconformal image of
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M(Ke,4n.(co +m0)), where

M(Kc*+n* (co+mo)) == MU (I)X/[l< U Fm(lcc*—&-m (co+ 770)))7
m=0

L (Keoin. (o +m0)) = the inverse image of [o(Ke, 1y, (co +10)) by 2 = 2.

Here M(K, 4y, (co + 10)) is obtained just by replacing J(P,) with /C, 4, (co + no) in the
definition of M(c). Although ¢, + 1. ¢ M, K., 4,.(co + 10) can be defined in the similar
manner. See the Remark (1) above. So what we first see as we zoom in the neighborhood
of s1 L ¢, is a quasiconformal image of KC., 1y, (co + 10), whose outer most part is jcoﬂo
(= broken dendrite) and inner most part is jcﬁ_m (= broken cauliflower). As we zoom in
further, we see quasiconformal image of the preimage of K., . (co+ ) by z — 22, whose
inner most part is a once iterated preimage of jCOJmO. After we see successive preimages
of Ke,in.(co+m0) by z — 2%, a much smaller Mandelbrot set Mj, finally appears. Since
KCe.4n.(co + mo) itself has a nested structure, the total picture has this very complicated
structure. The proof is similar to that of Theorem A.

(3) In [KKZ2] we present an alternative proof of Theorem A by using the parabolic im-
plosion technique. This proof can be easily adopted to the proof of Theorem C.
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