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概 要

非特異準射影代数多様体上において, 負のリッチ曲率を持った (概)完備ケー
ラー・アインシュタイン計量の境界近くでの振る舞いを, 境界因子上における
対数的標準束の正値性の退化の観点で考察する. この講演では, これまで講演者
自身によって得られている成果をまとめて報告する.

1 準射影代数多様体上の (概)完備ケーラー・アインシュタイン計量

n次元非特異複素射影代数多様体Xとその上の非特異複素超曲面D := (σ = o)に
対して, 準射影代数多様体X := X \Dを考える. X上にいつ負のリッチ曲率を持つ
ケーラー・アインシュタイン計量が存在するかについては, 対数的標準因子KX +D

の正値性の条件下で次の答えが出ている:

定理 1 (板東 [2],小林 (亮) [11], Tian-Yau [18]). 対数的標準因子KX +Dがネフ且
つ巨大, そしてDの外では豊富ならば, X はリッチ曲率が負の概完備ケーラー・ア
インシュタイン計量 ωX ∈ c1(KX +D)を唯一つ許容する.

概完備とは (Cheng-Yau [3]の意味での)有界幾何を持つ良い完備計量で近似でき
るという条件であるが, 実際に ωXは完備であるかどうかは未だ不明である. Dの近
傍でωXは, Dの法方向では穴あき円盤のポアンカレ計量と同値であると期待されて
いるが, Dと平行な方向においてはDに近づくと退化する可能性があり, それゆえ有
界幾何を持たないことも起こり得る. その点で所謂ポアンカレ増大度を持つ計量や
カスプ特異点を持つ計量とは一線を画す. (有界幾何を持つが)典型的な具体例とし
ては, 複素双曲空間やジーゲルモジュラー多様体などの局所エルミート対称空間X

のトロイダルコンパクト化X = X ∪Dと, その上のベルグマン計量 ωX である ([1],

[15]). 非コンパクトな完備リーマン多様体上では, ラプラシアンのスペクトル等の幾
何学的な情報を得るためには, 計量の無限遠 (この場合ではDのこと)への漸近挙動
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を理解することが不可欠である. その上, 標準計量を考えている点で「(X,ωX)に対
してDの近くでの挙動を調べる」ことは, 代数幾何学への応用の面でも重要な問題
と思われる.

以下では, この存在定理の仮定を強めた「対数的標準因子KX +Dが半豊富, そし
てDの外では豊富である」状況で,「対数的標準因子KX +Dの豊富性がDにおい
て退化する」ことに着目して, この問題について考察する.

この問題の先行研究として, Dにおいて退化しない状況においては, ωX は次の様
な漸近を持つことが示された (高次の漸近については Jiang-Shi [8]やRochon-Zhang

によって得られている):

定理 2 (小林 (亮) [11], G. Schumacher [16]). KX +DがX全体で豊富ならば, 次の
留数の公式 (Rn−1)と体積増大度の公式 (Vn−1)が成り立つ :

ResD ωX = ωD (Rn−1)

(ωX)
n =

V

∥σ∥2(− log ∥σ∥2)2
(Vn−1)

ここで, Dに沿った留数ResD ωX の定義はResD ωX := lim
ϵ→o

ωX |(σ=ϵ) である. また V

と ∥ · ∥2 = h(·, ·)はそれぞれ適切なX上の特異体積形式と非特異エルミート計量で
ある.

この場合は, 随伴公式 (KX + D)|D = KDと Aubin-Yauの結果によって, Dは負の
リッチ曲率を持ったケーラー・アインシュタイン計量 ωDを持つことに注意する. ま
たDの多様体としての小平次元 κ(D)は κ(D) = n− 1である.

2 一般化されたケーラー・アインシュタイン計量, 小平次元と漸近挙動

対数的標準因子KX +Dの豊富性がDにおいて真に退化する場合, 上述の留数と
体積増大度の公式はどのように変化するだろうか. つまり, 境界の標準因子KD =

(KX +D)|Dの正値性が退化する場合である. この場合は, 勿論Dは負のリッチ曲率
を持ったケーラー・アインシュタイン計量を持たない. またDの小平次元 κ(D)も
0 ≤ κ(D) ≤ n− 1の範囲全てとりうる.

まずD上のケーラー・アインシュタイン計量の代替としては, Song-Tian及び辻
によって導入された次の標準計量ではないかと私は予想している.

定理 3 (Song-Tian [17], 辻). m次元非特異複素射影代数多様体 Y は半豊富な標準
因子KY を持ち, その小平次元を κ = κ(KY )とする. そして Ycanを Y の標準モデル,

φ = φ|lKY | : Y → Ycanを多重標準写像, Y ◦
canはφの滑らかなファイバーを与える非特

異点から成る Ycanの部分集合とする. このとき, 次を満たす一般化されたケーラー・
アインシュタイン計量 (又は標準計量) と呼ばれる Ycan上の正閉 (1, 1)-カレントωcan

がただ一つ存在する:

(1) ωY := φ∗ωcan ∈ c1(KY )
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(2) ωcanは Y ◦
canで滑らかであり, Ωcan := ωκ

Y ∧Θは Y 上の連続な体積形式 (標準測
度と呼ばれる)を定める
(Θ : φの各ファイバーのカラビ・ヤウ体積形式を並べた (n− κ, n− κ)-形式)

(3) ωcanは次の一般化されたケーラー・アインシュタイン方程式を満たす :

Ric(ωcan) = −ωcan+ωWP on Y o
can (ωWP : φのヴェイユ・ピーターソン計量)

辻氏 [20]は κ = mの場合 (Y が一般型)に特に考察しており, ωY は特異ケーラー・
アインシュタイン計量 (またはケーラー・アインシュタイン カレント)と呼ばれてい
る. また κ = 0の場合 (Y がカラビ・ヤウ多様体)は ωY = oとみなす. この計量の応
用として, 射影族に対する相対標準束の正値性などがあり, 極小モデル理論との関連
や代数幾何学における大きな問題の解決に役立つことが期待されている.

またケーラー・リッチ流との関係についても, 様々な結果 (Song-Tian [17], 辻 [20],

Tian-Zhang [19]など)の後, 次の最終形が近年得られた:

定理 4 (Hein-Lee-Tosatti [7]). Y を半豊富な標準因子を持つ非特異複素射影代数多
様体とし, 0 < κ(KY ) ≤ nとする. このとき, 任意のケーラー計量 ω0を出発する Y

上の (正規化された)ケーラー・リッチ流ωY (t)は, t → ∞で一般化されたケーラー・
アインシュタイン計量 ωY に Y o

can上でC∞
locの意味で収束する.

そこで退化版の留数と体積増大度の公式に関して, 小林 (亮)と Schumacherの定
理 2に倣った講演者の予想を定式化すると次の様になる ((R0)は自明なので (R′

0)に
置き換える):

予想. κ = 0, 1, · · · , n− 1に対して

κ(D) = κ =⇒ ResD ωX = ωD (Rκ)

κ(D) = 0 =⇒ ResD (− log ∥σ∥2)ωX = (n+ 1)ωCY (R′
0)

κ(D) = κ ⇐⇒ (ωX)
n =

V

∥σ∥2(− log ∥σ∥2)n+1−κ
(Vκ)

ここで, V と ∥ · ∥はそれぞれ適切なX上の特異体積形式と非特異エルミート計量で,

V の零集合はD全体ではない多重極集合とする. また ωCYはDの余法束−NDに対
応するカラビ・ヤウ計量 (リッチ平坦ケーラー計量)である.

勿論, 定理 2はこの予想のKDが豊富である場合 (κ = n− 1の一部)が成り立つこ
とを表している. それ以外にも, この形で明確に主張してはいないものの, この予想
をサポートしている例はいくつか存在する.

3 境界が一般型の場合

対数的標準束KX + Dが豊富である場合は κ(D) = n − 1であるが, 逆は成り立
たない. κ(D) = n− 1であるときKDは巨大であるといい, Dは一般型と呼ばれる.
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KDが豊富からどのくらい違うかを表すのが, 非豊富集合B+(KD)である. この場合
D上の特異ケーラー・アインシュタイン計量ωDはB+(KD)の外で滑らかで, 満たす
方程式もそこでの通常のケーラー・アインシュタイン方程式である. κ(D) = n − 1

の場合の予想に対しては, 以下の成果を得ている :

定理 5 ([9], [10]). κ = n − 1の場合の留数予想 (Rn−1)と体積増大度予想 (Vn−1)は
正しい. すなわち,

(1) κ(D) = n− 1のとき, D上の特異ケーラー・アインシュタイン計量 ωDに対し

ResD ωX = ωD (Rn−1)

が成り立つ.

(2) 次は同値である :

κ(D) = n− 1 ⇐⇒ (ωX)
n =

V

∥σ∥2(− log ∥σ∥2)2
. (Vn−1)

ただし, V は非豊富集合B+(KD)でのみ零になる有界体積形式である.

この定理の証明の方針を述べる. まず (Rn−1)と (Vn−1)の =⇒について, Schu-

macherの証明では, KX +DがD上でも豊富であることから, ωDのX への拡張定
理を適用できた. しかし, 巨大の状況では拡張定理が成り立つかが不明であるため,

X 上の (正規化)ケーラー・リッチ流 (Lott-Zhang [13])とD上のケーラー・リッチ
流 (定理 4)によって, それぞれ ωXと ωDを近似した. その際, ケーラー・リッチ流の
留数がケーラー・リッチ流であることが鍵となる. この方法では, tに関する極限と
境界に近づける極限の 2つの極限が現れるので, 結論を得るためにはその順序を交
換する必要があり, そこでKDの巨大性の下でよく使われる所謂「辻のトリック」を
用いる.

(Vn−1)の⇐=については, まずポテンシャル論におけるリースの分解定理を用い
ると, 体積の式から log(V/h)|Dは複素モンジュ・アンペール方程式の劣解であるこ
とが導かれる. その不等式を S. Boucksomによる体積 vol(KD)の積分表示公式に適
用することで, その体積の正値性, 即ちKDの巨大性をもたらす.

4 境界がカラビ・ヤウの場合

次に κ(D) = 0の状況で予想を考える. Dは楕円曲線, アーベル多様体, K3曲面な
どを含み, (広い意味で)カラビ・ヤウ多様体と呼ばれる. まず随伴公式よりDの余
法束−NDは豊富であり, D上にカラビ・ヤウ計量 ωCY ∈ c1(−ND)が存在すること
に注意する. この場合のXの具体例を与えるのは複素双曲多様体Xのトロイダルコ
ンパクト化であり, それに対する予想 2は正しいことが既に計算されている.
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例 1 (N. Mok [14]). 複素双曲多様体X = Bn/Γのトロイダルコンパクト化をX と
する (一意に定まる). 境界因子は ∂Bnへの Γの作用の放物的固定点 p(の軌道)と対
応する. pに関するBnのジーゲル上半平面モデル Im s > |z1|2 + |z2|2 + · · ·+ |zn−1|2

を取り, その z = (z1, z2, · · · , zn−1)に対応するユークリッド部分Cn−1について, Γか
ら誘導される格子による商として得られるアーベル多様体が境界因子Dである. あ
る整数mや正定数 cを適切に取ると, σ = e

2π
√
−1

m
s, h = ec|z|

2
がX上のものとして定

まり, Bn上のポアンカレ・ベルグマン計量から誘導されるX上のケーラー・アイン

シュタイン計量 ωX =
1

2π

√
−1∂∂ log

1

(1− |w|2)n+1
, w ∈ BnはDの近傍で

ωX =
1

2π

√
−1∂∂ log

1

(Im s− |z|2)n+1

=
n+ 1

2π

(
c
√
−1

− log ∥σ∥2
dz ∧ dz +

√
−1dσ ∧ dσ

∥σ∥2(− log ∥σ∥2)2

)
,

(ωX)
n =

ncn−1
(
n+1
2π

)n
∥σ∥2(− log ∥σ∥2)n+1−0

(√
−1dz ∧ dz

)n−1 ∧
√
−1dσ ∧ dσ

の形をしていることが分かる. この結果 (R′
0)や (V0)を確認することができる.

この例以外の場合にも, 次のより一般的な状況では予想 2の正しさを証明するこ
とができた. 複素曲面の場合は小林 (亮)氏 [12]も同じことを示している.

定理 6 ([10]). κ = 0の場合の留数予想 (R′
0)と体積増大度予想 (V0)に関して, 次の

状況では正しい. すなわち,

(1) Dがアーベル多様体の非特異有限商のとき, D上のカラビ・ヤウ計量 ωCY ∈
c1(−ND)に対し

ResD (− log ∥σ∥2)ωX = (n+ 1)ωCY (R′
0)

が成り立つ.

(2) 体積増大度予想 (V0)の次の部分は常に成り立つ.

κ(D) = 0 =⇒ (ωX)
n =

V

∥σ∥2(− log ∥σ∥2)n+1
. (V0)

ただし, V はゼロにならない有界体積形式である.

(1)では,境界因子は共通しているが, X 自体は複素双曲多様体のトロイダルコンパ
クト化であるとは限らないことに注意する.

この定理の証明では, Grauertの定理を用いてDの近傍をNDの零セクションの
近傍と同一視することで計算を行う. 例えば, ωXをDの近傍で良く近似する参考計
量 ω̂X を, ωCYを用いて標準的な方法で構成し, その曲率を計算することが可能であ
る. それによって ω̂Xが有界幾何を持つことと, Dがアーベル多様体の非特異有限商
(つまり平坦多様体)であることが同値であることが判明する. (1)と (2)で扱える範
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囲の違いが出る理由として大きいのはこの部分で, (1)では複素モンジュ・アンペー
ル方程式に有界幾何の解析の手法を応用し, 適切な解の評価を実行できた. (1)の状
況では, Fang-Fu [5], Fu-Hein-Jiang [6]によって高階の漸近展開も得られており, そ
れの帰結としても (1)が従う. この方法が利用できない (2)については, またX上の
ケーラー・リッチ流 ωX(t)によって t → ∞での ωX の近似を行う. 有限時間 tでは
非退化の状況なので, 体積形式 ωX(t)

nの logの冪は 2であるが, t → ∞のときに log

の冪が n+1に繋げられる補助関数を見つけ, それを含めた解の一様評価をすること
で証明を行った. 対数的標準特異点の観点から, 局所的ではあるが似た状況で関連す
る研究も行われている ([4]).

5 境界が中間小平次元の場合

最後に 0 < κ(D) < n− 1の場合の予想 2について紹介する. 実は一般的な結果はま
だ得られておらず, (対数版ではあるが)典型例を与えるジーゲルモジュラー多様体
のトロイダルコンパクト化に関して, W. WangとYau-Zhangによる先行研究の計算
の続きを少し行い, 新たな解釈を与えたに過ぎない.

例 2 ([10], W. Wang [21], Yau-Zhang [22], [23]). 次数が g ∈ Nのジーゲルモジュラー
多様体X = Sg/Γのトロイダルコンパクト化をXとする. このコンパクト化はある
扇の族を用いて定義され ([1]), その扇に依存するため一般にXもその境界因子も一
意性はない. 更に境界因子は単純正規交差を持ち, D1+D2+ · · ·+DNと表せるため,

我々の仮定を満たさない. 従って, ここでは i = 1, 2, · · · , Nに対してDi \
∪

j ̸=i Dj の
近傍のみ考察することにする. 簡単のため iを固定し, D := Di, D

◦ := Di \
∪

j ̸=i Dj

と単純に表す. 実はこの集合とその近傍は扇に依存せずに決まっている. D◦は Γの
作用で固定される ∂Sgの深さが 1の放物的境界成分 (カスプ) Cと対応する. Cの例
としては, 標準的境界成分と呼ばれる{[

w′ 0
t0 1

]
; w′ ∈ Sg−1

}

があるが,簡単のためとこれがCであるとする. Cに関するSgのジーゲル上半平面モ

デルHg : Im

[
z′ z′′

tz′′ s

]
> 0 を取り, その z′に対応するHg−1 ≃ Sg−1と, z′′に対応

するユークリッド部分Cg−1について, Γから誘導されるHg−1 ×Cg−1 ≃ Sg−1 ×Cg−1

への算術群の作用による商がD◦である. よって, Sg−1成分への作用を Γ′と表した
とき

φ : D◦ → X ′ := Sg−1/Γ
′

という定空間が次数の 1つ小さいジーゲルモジュラー多様体であるファイバー空間
の構造がD◦に入る. z′でのファイバーは, Zg−1 + z′ Zg−1 の形の格子 (と有限群)に
よるCg−1の商で, つまりアーベル多様体の有限商である. 従って, D◦の (対数的)小
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平次元は κ(D◦) = dimX ′ =
g(g − 1)

2
で, ヴェイユ・ピーターソン計量は

ωWP = − 1

2π

√
−1∂∂ log det Im z′

となる. ある整数mを適切に取ると, σ = e
2π

√
−1

m
sがD◦の近傍上のものとして定ま

り, Sg上のベルグマン計量から誘導されるX上のケーラー・アインシュタイン計量

ωX =
1

2π

√
−1∂∂ log

1

det(1g − ww∗)g+1
, w ∈ SgはDの近傍で

ωX =
1

2π

√
−1∂∂ log

1(
det Im

[
z′ z′′

tz′′ s

])g+1 ,

(ωX)
g(g+1)

2 =
v

|σ|2(− log |σ|2)g+1

(√
−1dz′ ∧ dz′

) g(g−1)
2 ∧

(√
−1dz′′ ∧ dz′′

)g−1 ∧
√
−1dσ ∧ dσ

の形をしていることが分かる (vは有界な正値関数). 従って g+1 = dimX+1−κ(D◦)

が成り立ち, (V g(g−1)
2

)の体積増大度を満たす. D◦に沿った留数については,

ResD◦ ωX =
1

2π

√
−1∂∂ log

1

(det Im z′)g+1 =
g + 1

g
ωX′

と計算できるので, ResD◦ ωX は一般化されたケーラー・アインシュタイン方程式

Ric (ResD◦ ωX) = −ωX′ = −ResD◦ ωX + ωWP

の解である. この結果 (R g(g−1)
2

)も確認できた.
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