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1 はじめに
正則関数空間における不変部分空間の研究は，1949年にBeurlingによって，Hardy
空間の不変部分空間における完全な特徴付けが得られて以降，様々な正則関数空
間の不変部分空間の研究が行われてきた。一般的に，線形空間H を Hilbert空間
とし，T を H 上の有界線形作用素とする。そのとき，H の閉部分空間M に対
して

TM ⊂ M

を満たすとき，M は T に対して不変であるという。その中で，特にHが正則関数
からなるHilbert空間の場合，座標関数の掛け算作用素に対して不変である閉部分
空間を単に不変部分空間という。本講演では、1変数の正則関数からなるHilbert
空間（以下，正則ヒルベルト空間と呼ぶことにする）の不変部分空間の代表的な
性質について紹介し，それと比較しながら 2変数Hardy空間の不変部分空間につ
いての結果を紹介していく。

2 1変数の正則Hilbert空間
2.1 Hardy空間
複素数平面 Cの単位開円板 D = {z ∈ C : |z| < 1} 上の正則関数全体を Hol(D)
で表す。D上の Hardy空間H2(D)は，次のように定義される空間である。

H2(D) =
{
f ∈ Hol(D)

∣∣∣ ∥f∥2H2(D) = lim
r→1

1

2π

∫ π

−π

|f(reiθ)|2 dθ < ∞
}

この空間の不変部分空間は，Beurlingにより次のような完全な特徴付けが知られ
ている。

Beurlingの定理 ([2])� �
M をH2(D)の閉部分空間とする。そのとき，次は同値である：
(1) M が不変部分空間である
(2) M = φ(z)H2(D), φは内部関数� �



この定理より，不変部分空間M に対して，
M ⊖ zM = C · φ(z), [M ⊖ zM ] = [{φ(z)}] = φ(z)H2(D) = M

となることがわかる。ここで，集合 E ⊂ H2(D)に対して，[E]は E を含む最小
の不変部分空間を表す。このことから，不変部分空間M を生成するのに必要な
関数の最小個数を rank (M)で表すことにすると，H2(D)では

dim(M ⊖ zM) = rank (M) = 1

が常に成り立つことがわかる。

2.2 Bergman空間
不変部分空間の研究が盛んに行われている正則ヒルベルト空間として，Bergman
空間がある。D上の Bergman空間は次のように定義される：

L2
a(D) :=

{
f ∈ Hol(D)

∣∣∣ ∥f∥2L2
a
=

1

π

∫
D
|f(z)|2 dA(z) < ∞

}
⟨f, g⟩ = 1

π

∫
D
f(z)g(z) dA(z).

この Bergman空間においては，H2(D)における Beurlingの定理のような完全な
特徴付けは得られていない。その理由の一つが，L2

a(D)では，任意の 1 ≤ k ≤ ∞
に対して rank (M) = k となる不変部分空間M が存在し，Hardy空間と比べ状
況が複雑であることが挙げられる。しかし，Hardy 空間と同様に，次のことが
Aleman-Richter-Sundbergによって示されている：

Aleman-Richter-Sundbergの定理 ([1])� �
M を L2

a(D)の不変部分空間とする。そのとき，

[M ⊖ zM ] = M� �
L2
a(D)では必ずしも rank (M) = 1ではない。この定理より，

dim(M ⊖ zM) = rank (M)

であることが直ちにわかる。また，Shimorinによって，一般的に次が成り立つこ
とが示されている：

Shimorinの定理 ([9])� �
T をHilbert空間H 上の有界線形作用素とする。そのとき，T が 2つの条件
(a) ∥Tx+ y∥2 ≤ 2(∥x∥2 + ∥Ty∥2), x, y ∈ H

(b)
⋂
{TnH : n ≥ 0} = {0}

を満たすならば，H = [H ⊖ TH]である。� �



有界線形作用素 T が (a)と (b)を満たすならば，T に対する任意の不変部分
空間M ⊂ H に対して T |M : M → M もまた (a)と (b)を満たす。Shimorinはこ
の定理を用いて，Aleman-Richter-Sundebergの定理により簡単な証明を与えた。
この定理については、さらに簡単な証明を得ている：
定理 ([5])� �
T を Hilbert空間H 上の有界線形作用素とする。そのとき，T が次の条件
(i) ∥Tx∥2 + ∥T ∗2Tx∥2 ≤ 2∥T ∗Tx∥2, x ∈ H

(ii) 次を満たす c > 0が存在する： ∥Tx∥ ≥ c∥x∥, x ∈ H

(iii) ∥T∥ ≤ 1

(iv) 任意の x ∈ H に対して，∥T ∗kx∥ → 0（k → ∞）
を満たすならば，H = [H ⊖ TH]である。� �
この証明は，Sun-Zheng からアイディアを得ている。これを Bergman 空間

L2
a(D)の不変部分空間M について適用する（つまり H = M，T = Tz |M）と，

(i),(ii),(iii),(iv)について比較的容易に成り立つことがわかる。この証明は関数解
析の基本的な手法と比較的に容易な計算のみで為されており，現時点で Aleman-
Richter-Sundbergの定理の最も簡単な証明方法であると思っている。また実際に
は，表現に違いはあるが，Shimorinの定理と同値の主張となっている。

3 2変数Hardy空間
ここからは，2変数の Hardy空間について考える。2次元複素空間 C2 の 2つの
変数を z, wとし，2重単位円板

D2 = {(z, w) : |z| < 1, |w| < 1}

上の正則関数全体をHol(D2)で表す。D2 上の Hardy空間H2(D2)は

H2(D2) =

{
f ∈ Hol(D2)

∣∣∣ ∥f∥2 = lim
r→1

∫ π

−π

∫ π

−π

∣∣f(reiθ1 , reiθ2)∣∣2 dθ1dθ2
(2π)2

< ∞
}

によって定義される。2変数Hardy空間というと，単位開球上のHardy空間もあ
るが，本講演では D2 上の Hardy空間について考える。

2変数正則関数からなる空間においては，それぞれの座標関数の掛け算作用に
対して不変であるもの，つまり閉部分空間M で

zM ⊂ M かつ wM ⊂ M

を満たすものを不変部分空間と呼ぶ。H2(D2)で最も単純な不変部分空間M の例
として，1変数 Hardy空間のような

M = φH2(D2) （φは内部関数）



の形のものが挙げられる。しかし，H2(D2)においては，この形ではない不変部
分空間が数多く存在する。上記の形の不変部分空間について，その特徴付けは不
変部分空間M 上の作用素を用いて次のように与えられている：

Mandrekarの定理 ([6])� �
M をH2(D2)の不変部分空間とし，M 上の作用素

Rz = PMTz, Rw = PMTw on M

とする。そのとき，M が Beurling型不変部分空間，つまり

M = φ(z, w)H2(D2) (φ ∈ H2(D2), |φ| = 1 on T2)

であることと，
RzR

∗
w = R∗

wRz

であることは同値である。� �
H2(D2)の不変部分空間のランクについては，Bergman空間と同様に，任意

の 1 ≤ k ≤ ∞に対して rank (M) = k となる不変部分空間M が存在する。ここ
で，1変数 Hardy空間，Bergman空間において [M ⊖ zM ] = M が成り立つが，
H2(D2)においても

[M ⊖ [zM + wM ]] = M (1)

であるかという自然な問題が出てくる。しかし，任意の不変部分空間M ̸= {0}
に対して

1 ≤ dim(M ⊖ [zM + wM ]) ≤ rank (M)

であるが，H2(D2)では
dim(M ⊖ [zM + wM ]) = rank (M) (2)

とならない不変部分空間M が存在し，一般的には (1)は成り立たない。では (2)
を満たす不変部分空間は (1)を満たすだろうか。これに関して，Nakaziによって
次の問題が提出されている：

Nakaziの問題 ([7])� �
関数 f ∈ H2(D2)とし，M = [f ]とする。そのとき，常に

dim(M ⊖ [zM + wM ]) = rank (M) = 1

であるが，
[M ⊖ [zM + wM ]] = M

であるか。� �



4 Nakaziの問題
ここからは [4]の結果について述べる。f ∈ H2(D2)を 0でない関数とする。考え
るのは 1つの関数によって生成される不変部分空間 [f ]であり，まずはこの部分
空間について考える。
関数 f は D2 上の関数であるが，

f(eiθ1 , eiθ2) = lim
r→1

f(reiθ1 , reiθ2) on a.e. T2

と書くことにする。
dµ = |f |2 dm on T2

ただし dmは T2 上のルベーグ測度，とおく。この dµを用いて，C2 上の多項式
環 C の L2(dµ)ノルムでの閉包をH2(dµ)で表記する，つまり

H2(dµ) = CL2(dµ)
= CH2(dµ)

と書ける。そのとき，H2(dµ)は T2 上の関数空間であり,

C ⊂ H2(dµ), C ·H2(dµ) ⊂ H2(dµ)

を満たす。ここでは，見やすくするため Mf = [f ] とおくことにする。Mf と
H2(dµ)の間で次の関係が成り立つ：
命題 1 すべての f ∈ H2(D2)に対して，Mf = fH2(dµ)である。
この段階でH2(dµ)は T2 上の関数空間であるが，Okaの定理より D2 上の正

則関数空間としてみなすことができる。では，このとき
[f ]⊖ [z[f ] + w[f ]]

に含まれる関数はどのようなものであるだろうか。実際には、

H2(dµ) = zH2(dµ) + wH2(dµ)
H2(dµ)

⊕ C ·Kµ, ⟨1,Kµ⟩H2(dµ) = 1

を満たすKµ ∈ H2(dµ) がただ一つ存在し，

Mf = zMf + wMf
H2(D2) ⊕ C · fKµ

と書ける。このとき，次がわかる：
命題 2 関数Kµ はH2(dµ)の原点における再生核である，つまり

⟨h,Kµ⟩H2(dµ) = h(0, 0), h ∈ H2(dµ)

が成り立つ。
Hilbert空間 H ⊂ Hol(Dn) において，FC = {Fp : pは Cn の多項式 }が H

で稠密であるとき関数 F はHの巡回ベクトルであるという。このとき，Nakazi
の問題は次により，H2(dµ)の原点における再生核は常に巡回ベクトルであるか
という問題と同値であることがわかる。
命題 3 [fKµ] = Mf ⇐⇒ Kµ はH2(dµ)の巡回ベクトルである。



5 非巡回な再生核
4節のことから，任意の f ∈ H2(D2)に対して，f によって定まるH2(dµ)の原点
における再生核Kµ はH2(dµ)の巡回ベクトルであるか？ということに，Nakazi
の問題を言い換えることができる。実際には [4]で成り立たない例を見つけるこ
とができた。
定理 ([4])� �
関数 f ∈ H2 とし，M = [f ]とする。そのとき，常に

dim(M ⊖ [zM + wM ]) = rank (M) = 1

であるが，
[M ⊖ [zM + wM ]] ̸= M

となる f が存在する。� �
いまD2上の有界正則関数全体をH∞(D2)で表すことにし，関数 f ∈ H∞(D2)

で |f | ≥ δ > 0 a.e. on T2 を満たすものを考える。そのとき，Mf = fH2(D2)と
なり，集合として H2(dµ) = H2(D2)となる。また，巡回性について次のことが
わかる：
命題 4 関数 f ∈ H∞(D2)を，ある δ > 0に対して

|f | ≥ δ a.e. on T2

を満たすものとする。そのとき，次は同値である：
(1) h ∈ H2(dµ)はH2(dµ)の巡回ベクトルである
(2) hはH2(D2)の巡回ベクトルである。
いま z 変数ディスク環を A(Dz) によって表記する。定数でない関数 G(z) ∈

A(Dz)とし， ∥G∥∞ < 1を満たすものとする。そのとき，外部関数 F (z)で
|G|2 + |F |2 = 1 a.e. on Tz

を満たすものが存在する。これらの G,F に対して，D2 上の内部関数 φで
φF (z)

w −G(z)
∈ H2(D2)

を満たすものが存在する。G(z)の定め方によって，この形の関数の中に，その関
数によって定まるH2(dµ)の原点における再生核が命題 4の (2)を満たさないケー
スがあることを明らかにし，Nakaziの問題が成り立たないことを明らかにした。
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