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概要
本稿では, 近年 R. Berman 氏によって進められてきたコンパクトな複素多様体上における Kähler-

Einstein計量に対する確率論的アプローチの一部を一般化し, 微視的安定性閾値と呼ばれる不変量を用いる
ことで, 偏極代数多様体上の (錐的特異点までを許した)定スカラー曲率 Kähler計量の存在に関する十分条
件をいくつか与える.

1 背景
本稿のもっと中心的な興味の対象は, 定スカラー曲率 Kähler計量と呼ばれる, 曲率に関して特別な条件を満

たす Kähler計量である. 本稿における主要な結果を述べるためには, この数年において R. Bermanによって
確立されてきた Kähler-Einstein計量に関する確率論的なアプローチやそれに深く関連している研究について
ある程度正確に述べる必要がある. 第 1章では Kähler-Einstein 計量を定義し, 本研究と関わる背景について
概観する.

1.1 Kähler-Einstein計量
複素多様体X 上の実 (1,1)-形式 ωが正定値かつ外微分 dに関して閉じているとき, ωを Kähler形式と呼び,

複素多様体 X を Kähler多様体と呼ぶ. Kähler形式はその複素構造から自然にエルミート計量を誘導するこ
とが知られており, 本稿ではこの意味で Kähler形式のことを全て Kähler計量と呼ぶ. Kähler多様体は, その
複素構造に適合した, 曲率に関して特別な条件を持つ Kähler計量 (標準計量や canonical Kähler metricと呼
ばれる)を持つであろうと期待されている. どのような条件を満たす Kähler計量を標準計量と呼ぶべきか?と
いう問題は微妙な問題であるが, その重要な候補として, 後に定義する Kähler-Einstein計量や定スカラー曲率
Kähler計量などが中心的に注目を集め, 研究がなされてきた.

以下では, Kähler 多様体 X はコンパクトであるとし, その複素次元を n とする. Kähler 計量 ω から定ま
る体積形式 ωn は反標準直線束 −KX(:= detT 1,0X)のエルミート計量を自然に定め, その Chern曲率形式に
√
−1をかけたものを ω の Ricci形式と呼び, Ricω と書く. ω と Ricω はその定義からどちらも実閉 (1,1)-形
式であり, Rimann幾何の場合と同様に自然に Einstein計量を定義することができる.

定義 1. 次を満たす定数 λ ∈ Rが存在するとき, ω を Kähler-Einstein計量と呼ぶ:

Ricω = λω.

この条件は Ricω が Kähler 計量 ω に対して定義される ∂-Laplacian ∆∂ に関して調和形式であることと
同値である. Kähler多様体上の調和積分論によって, 別の Kähler計量 ω′ が ω と同じコホモロジー類を持つ
([ω′] = [ω]が成り立つ)のであれば, あるX 上の滑らかな関数 ϕによって ω′ = ω +

√
−1∂∂ϕと書くことがで
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きる. これにより Kähler-Einstein計量の存在に関する問題は方程式

Ric (ω +
√
−1∂∂ϕ) = λ(ω +

√
−1∂∂ϕ), ω +

√
−1∂∂ϕ > 0

を満たす X 上の関数 ϕ が存在するか?という問題に帰着される. さらに調和積分論からの重要な帰結として,

Kähler-Einstein 計量の存在・非存在は以下の複素 Monge-Ampère 方程式と呼ばれる未知関数 ϕ に対する 2

階の非線形偏微分方程式の可解性と同値になる:(
ω +

√
−1∂∂ϕ

)n
= ef−λϕωn, ω +

√
−1∂∂ϕ > 0.

ただしここで f は Ricciポテンシャルと呼ばれる関数で, Ricω = λω +
√
−1∂∂f を満たす. 実際にこの方程

式を満たす関数 ϕが存在すれば, Kähler計量 ω+
√
−1∂∂ϕは Kähler-Einstein計量となる. Ricci形式はその

定義から X の第一 Chern類 c1(X)を代表することが直ちに従う. この事実から Kähler-Einstein計量の存在
を問う場合には, 定数 λの符号に応じて以下の 3つの場合のみを考えればよい.

� c1(X) < 0 (λ < 0の場合に対応し, X は canonically polarizedであるという)

� c1(X) = 0 (λ = 0の場合に対応. Calabi-Yau多様体)

� c1(X) > 0 (λ > 0の場合に対応. Fano多様体)

複素次元が 1 のとき, すなわち閉 Riemann 面を扱う場合には, これらはそれぞれ上から種数が 2 以上の
トーラス, 楕円曲線, Riemann 球面の場合に対応している. いずれの場合においても一意化定理によって
Kähler-Einstein 計量の存在を示すことができ, 厳密に書き下すことができる. この閉 Riemann 面における
結果の自然な高次元化の問題として, 1950 年代頃から Calabi を中心として, c1(X) が上記 3 条件のいずれ
かを満たす場合に X は Kähler-Einstein 計量を許容するか?という問題が研究された. しかし X が Fano で
ある場合に, Kähler-Einstein 計量の存在に関する障害が存在することが松島や二木によって指摘されており
([28, 23])), 例えば 2次元射影空間 P2 は Fubini-Study 計量を Kähler-Einstein 計量として持つが, それ 1点
で爆発 (blow-up)した複素曲面は Kähler-Einstein計量を許容しない. Fano多様体上の Kähler-Einstein計量
の存在に関する問題は後に述べるが, その他の場合においては Aubinと Yauによって次の重要な結果が証明
された.

定理 2 ([3, 32]). コンパクト Kähler多様体 X が c1(X) < 0または c1(X) = 0を満たすとき, 常に Kähler-

Einstein計量が存在する.

正確には Aubin と Yau が c1(X) < 0 である場合を, Yau が c1(X) = 0 である場合をそれぞれ証明してい
る. 本稿では Bermanによる研究との関連性を見るため, この定理の c1(X) < 0, すなわち X が canonically

polarized である場合について掘り下げて説明する. 適当な正規化を施し, λ = −1 と仮定する. この場合,

Kähler-Einstein 計量が存在すれば一意であることは比較的簡単な議論から従うが, 存在に関しては連続法を
先述の複素Monge-Ampère方程式に対して適応することで証明することができる. 具体的にはパラメーター
t ∈ [0, 1]に対して, 以下のような複素Monge-Ampère方程式を考える:(

ω +
√
−1∂∂ϕt

)n
= etf+ϕtωn · · · (∗)t.

さらに S := { t ∈ [0, 1] | (∗)tが解を持つ }と定める. t = 0のときは自明な関数 ϕ0 = 0が (∗)0 の解となるた
め 0 ∈ S であり, 特に S は空集合でない. また逆関数定理によって S は開集合であり, 解に関する適切なアプ
リオリ評価を示すことで S は閉集合であることも分かる. 以上より区間 [0, 1]の連結性から S = [0, 1]となり,

t = 1の解 ω +
√
−1∂∂φ1 として Kähler-Einstein計量を得る.

このような連続法による Kähler-Einstein計量の存在証明は, ωに cohomologousな別の Kähler計量をとっ
た場合にも機能する (すなわち [ω′] = [ω] = −c1(X) となるいかなる Kähler 計量 ω′ をとっても, ω′ を初期
計量とする Kähler-Einstein 計量へ至る計量の族を構成することができる) ため, 構成に関してはこの意味で
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初期計量の取り方に依存している. Bermanは上に述べたような Kähler-Einstein計量の存在証明の結果から
さらに踏み込んで, 高次元の場合において, 初期計量の取り方などに依らない canonical な構成によって, 閉
Riemann面のときのように Kähler-Einstein計量を厳密に書き下すことができるか?という問題を確率論的観
点から研究した. もう少し正確には, Bermanは X が canonically polarizedである場合に, 複素多様体のみか
ら決まるデータによって記述された canonicalな Kähler計量の列で, Kähler-Einstein計量に適切な意味で収
束するものを構成しており, 次節ではそれについて述べる.

1.2 Kähler-Einstein計量と大偏差原理
Berman による確率論的アプローチを述べるために, 論文 [4, 5] に従い準備を行う. 論文では熱力学や統計
力学で用いられる用語 (自由エネルギーや分配関数, Gibbs測度など)がよく使われており, 本稿でもそのまま
踏襲するが, 後回しにするものも含め定義等は全て書いていく. 以後 V :=

∫
X
ωn とし, dV := ωn/V とする.

dV は X 上の確率測度であることに注意せよ. まず, X 上の確率測度の空間 P (X)上の汎関数である自由エネ
ルギー Fβ を

Fβ(µ) := EntdV (µ) + βE(µ), µ ∈ P (X)

で定める. ここで, EntdV は測度 dV に対する相対エントロピーであり, E は pluricomplex energy と呼ばれ
る汎関数で, これらの定義や性質の詳細については第 2章で述べる. また, β ∈ Rを逆温度と呼ぶ. 自由エネル
ギー Fβ の臨界点 µβ は以下の意味で twistされた Kähler-Einstein方程式を満たす:

Ric (ωβKE) = −βωβKE + (1− β)Ricω, µβ =
ωn
βKE

V
.

本節では X は常に canonically polarized, すなわち c1(X) < 0であると仮定する. この条件は小平の埋蔵
定理によって標準直線束 KX が豊富, つまり任意の十分大きい k に対して kKX := K⊗k

X が適切な意味で十分
多くの大域的正則切断を持つという条件と同値である. 大域的正則切断の空間H0(X, kKX)は有限次元複素線
形空間であり, その次元は N = Nk := dimH0(X, kKX) = O(kn)を満たす. H0(X, kKX)の基底 (s

(k)
i )Ni=1

を固定する. やや唐突ではあるが, X の N 個の直積空間 XN を考え, その上のスレーター行列式と呼ばれる正
則切断 detS(k) を次で定義する:

detS(k)(x1, ..., xN ) := det
(
s
(k)
i (xj)

)
ij
∈ H0

(
XN , kKXN

)
.

さらに Gibbs測度と呼ばれる XN 上の確率測度を次で定める:

µ
(N)
β :=

e−βNE(N)

dV ⊗k

ZN (β)
=

∥∥detS(k)
∥∥2β/k dV ⊗k

ZN (β)
.

ここで, ‖ · ‖は dV から定まるKX のエルミート計量であり, E(N) := − 1
kN log

∥∥detS(k)
∥∥2 である. Gibbs測

度の定義に現れる規格化定数 ZN (β)は分配関数と呼ばれ, 以下で定義される:

ZN (β) :=

∫
XN

e−βNE(N)

dV ⊗k =

∫
XN

∥∥∥detS(k)
∥∥∥2β/k dV ⊗k.

Gibbs測度 µ
(N)
β は, その定義から基底の取り方に依存しないことに注意せよ. また Gibbs測度は直積 XN に

対する置換群の自然な作用に関して不変である. この事実から測度空間 (XN , µ
(N)
β )上に, empirical measure

と呼ばれる確率測度の空間 P (X)上に値をとる確率変数 δN を定義することができる:

δN : XN → P (X) ; (x1, ..., xN ) 7→ 1

N

N∑
i=1

δxi
.

ここで δx は点 x ∈ X 上の Dirac測度を表す. 押し出し (δN )∗µ
(N)
β ∈ P (P (X))を the law of the empirical

measureと呼ぶ. Bermanは以上の準備のもとで, 次の定理を示した.
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定理 3 ([5, 7]). 任意の β > 0に対して, the law of the empirical measure (δN )∗µ
(N)
β は次の意味で大偏差原

理を満たす; 任意の µ ∈ P (X)に対し, 次が成り立つ.

−
(
Fβ(µ)− inf

P (X)
Fβ

)
= lim

ϵ→0
lim inf
N→∞

1

N
log(δN )∗µ

(N)
β (Bϵ(µ)) = lim

ϵ→0
lim sup
N→∞

1

N
log(δN )∗µ

(N)
β (Bϵ(µ)).

この文脈で, 汎関数 Fβ − infP (X) Fβ は rate関数, N = Nk は speedと呼ばれる. また Bϵ(µ)は µを中心と
した 2-Wasserstein距離に関する半径 ϵの球である. (確率測度の空間内の球であることに注意せよ.) この定理
によって, N → ∞としたときに測度 (δN )∗µ

(N)
β の質量が自由エネルギー Fβ の臨界点 µβ (すなわち twisted

Kähler-Einstein 計量から定まる確率測度) に密集していくことが分かり, empirical measure δN が確率の意
味で µβ に収束することが示される. さらにスレーター行列式 detS(k) の定義より, β = 1の場合は Gibb測度
は dV を使わずに定義することができる:

µ
(N)
1 =

(detS(k))1/k ∧ (detS(k))1/k

ZN (1)
. (1)

これより, Gibbs 測度を XN−1 上で積分することで得られる X 上の確率測度 ∫
XN−1 µ

(N)
1 は, 基底や dV の

取り方に依存せず定義されており, さらに Gibbs測度の置換群の作用に関する不変性を使うことによって, こ
れは δN の Gibbs 測度に関する期待値 E(δN ) に一致していることが分かる. 以上から N → ∞ としたとき∫
XN−1 µ

(N)
1 = E(δN ) → µ1 = V −1ωn

KE であることがわかり,
∫
XN−1 µ

(N)
1 の曲率形式 ωk は dV や初期計量な

どのデータに依存しない canonicalな列として, ωKE にカレントの意味で収束することが示される.

canonical な列 ωk を構成するうえで, 式 (1) のように書けることは非常に重要である. 本節では X が
canonically polarizedであり, kKX が十分多くの正則切断を持つ場合を扱ったが, 次節では −kKX が正則切
断を十分多く持つ場合 (X が Fanoの場合)に関する Bermanの研究について述べる.

1.3 Fano多様体における Kähler-Einstein計量, δ-不変量と微視的安定性閾値
本節では X は Fano 多様体, つまり c1(X) > 0 であることを仮定する. すなわち十分大きい k に対し
て, −kKX は適切な意味で十分多くの大域的正則切断を持つ. Fano 多様体における Kähler-Einstein 計量
の存在に関する問題は canonically polarized や Calabi-Yau の時に比べてより微妙であり, Kähler-Einstein

計量を許容しない Fano 多様体は豊富に存在する. この Kähler-Einstein 計量の存在に関する問題は, そも
そもは非線形偏微分方程式に関する幾何解析の問題であるが, 正則ベクトル束上の Hermite-Einstein 計量
に関する小林-Hitchin 対応の研究の観点から, ある種の代数幾何学的安定性と等価であることが予想され,

Yau-Tian-Donaldson予想と呼ばれ, 多くの数学者によって活発に研究された. この予想は一般の偏極代数多様
体に対しても定式化することができ, それについては第 2章で触れる. 特に Fano多様体上の Kähler-Einstein

計量については, 以下の重要な結果が知られている.

定理 4 ([9, 16, 17, 18, 30, 34]). Fano多様体 X に対し, X が Kähler-Einstein計量を一意的に持つことと X

が (一様)K安定であることは同値である.

ここで K安定性とは, テスト配位と呼ばれる X の代数多様体としてのある種の退化と, そのテスト配位に関
する Donaldson-二木不変量で定義される代数幾何学的安定性であり, 1997年に Tianに解析的に導入され, そ
の後 Donaldsonによって代数幾何学的に再定式化された. さらに一様 K安定性とは K安定を定義の段階から
より強めたもの ([13, 20]) で, Berman-Boucksom-Jonsson によって Kähler-Einstien 計量の存在と等価であ
ることが証明された ([9]). 本稿では一様 K安定性の方に今後触れていく.

少なくとも Fano 多様体が Kähler-Einstein 計量を許容するときには, 前節のような確率測度を用いた
canonicalなアプローチが期待される. 自由エネルギー Fβ の臨界点 µβ は次のような twisted Kähler-Einstein

計量に対応する:

Ric (ωβKE) = −βωβKE + (1 + β)Ricω, µβ =
ωn
βKE

V
.
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つまり Ricci形式が正である Kähler-Einstein計量は β = −1のときの解に対応しており, 逆温度 β としては
負の値を考える必要がある. kKX の代わりに −kKX に値をとる正則切断を考えることで前節と同様にスレー
ター行列式 detS(k) ∈ H0(XN ,−kKXN )を定義することができるが, 対応する XN 上の “測度”

(detS(k))−1/k ∧ (detS(k))−1/k

は detS(k) の零点に沿って特異性を持ち, Gibbs測度に現れる規格化定数である分配関数 ZN が well-defined

であるかは一般には保障されない. これは前節のアプローチを実行するうえで根源的な問題を引き起こしてい
るが, 逆に Bermanはスレーター行列式 detS(k) に関する可積分性の問題をある種の安定性条件として解釈し,

次のような不変量を導入した.

定義 5 ([5, 7]). X のレベル k における微視的安定性閾値 (microscopic stability threshold)を次で定義する:

γk(X) = γN (X) := sup

{
γ > 0

∣∣∣∣ZN (−γ) =

∫
XN

∥∥∥detS(k)
∥∥∥−2γ/k

dV ⊗k < +∞
}
.

さらに, その極限を γ(X) := lim infN→∞ γN (X)で定める.

微視的安定性閾値 γk(X) は基底の取り方に依存しないことに注意せよ. また, γk(X) はその定義から組
(XN ; 1

k (detS
(k) = 0))の対数的標準閾値 (log canonical threshold)として理解することができる. さらに,

定義 6 ([5, 7]). Fano多様体 X は γ(X) > 1を満たすとき, 一様 Gibbs安定であるという.

藤田氏によって, 一様 Gibbs安定性が K安定性を導くことが示されており ([21]), さらに藤田-尾高によって
導入された δ-不変量によって, 一様 Gibbs安定性と一様 K安定性との関係が議論された.

定義 7 ([22]). H0(X,−kKX)の基底 (si)
N
i=1 に対し, Q-因子D :=

∑N
i=1{si=0}

kN を k-基底型因子 (k-basis type

divisor)と呼ぶ. X のレベル k における δk-不変量を次で定める:

δk(X) := inf
D∼Q−KX ;
k−basis type

lct(X;D).

ここで, lct(X;D)は組 (X;D)に対する対数的標準閾値である. さらに X の δ-不変量を次で定義する.

δ(X) := lim sup
k→∞

δk(X).

後に Blum-Jonsson によって δ(X) = limk→∞ δk(X) として書けることが証明された ([12]). この不変量
δ(X)は次の意味で一様 K安定性を特徴づけている.

定理 8 ([12, 22]). Fano多様体 X が一様 K安定であることと, δ(X) > 1であることは同値である.

正確には条件 δ(X) > 1が一様 K安定性に対する十分条件であることが藤田-尾高 ([22])によって, 必要条件
であることが Blum-Jonsson([12])によって証明された. さらにKewei Zhang氏によって次の結果が得られた.

定理 9 ([34]). Fano多様体 X が Kähler-Einstein計量を一意的に持つことと, δ(X) > 1であることは同値で
ある.

ここで, Zhangによる証明は一様 K安定性を経由していない (定理 4を用いていない)ことに注意する. さ
らに藤田-尾高の論文において, δk-不変量と微視的安定性閾値について次の不等式が与えられた.

定理 10 ([22]). Fano多様体 X に対し, 任意の k について, 次の不等式が成り立つ.

δk(X) ≥ γk(X).

特に, X が一様 Gibbs安定であれば一様 K安定であり, Kähler-Einstein計量を持つ.
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後に Berman([4]) によって Rubinstein-Tian-Zhang の結果 ([29]) を経由した解析的な別証明が与えられ
ることになるが, 先に証明された上記の藤田-尾高による定理 10 は純代数幾何的手法によって証明されてい
る. 後で見るが, 少なくとも (極限をとらない有限の) 各 k に対して等号は一般には成立しないことが藤田,

Blum-Jonsson, Rubinstein-Tian-Zhang([21, 12, 29]) によって知られている. さらに Berman によって分配
関数 ZN と twistされた満渕汎関数

M−γ(ϕ) := F−γ(µ) = EntdV (µ)− γE∗(µ), µ = V −1ωn
ϕ

に関する明示的な不等式が与えられ, 一様 Gibbs安定性が Kähler-Einstein計量の存在を導くことが, 一様 K

安定性や δ-不変量を経由することなく直接証明された.

定理 11 ([4]). 任意の γ > 0と k > 0に対し, 次が成立する.

− 1

N
logZN (−γ) ≤ k + γ

k + 1
infM−γ′ +O

(
k−1

)
ここで, γ′ := γ(1−O(k−1))である. 特に X が一様 Gibbs安定であれば Kähler-Einstein計量が存在する.

ここで, Kähler-Einstein計量の存在は満渕汎関数の強圧性 (coercivity)から導かれる. この強圧性について
は次章において説明する. 逆に Kähler-Einstein 計量の存在あるいは一様 K安定性から一様 Gibbs 安定性が
導かれるか?という問題は依然として残されている. さらに empirical measure δN が Kähler-Einstein計量か
ら定まる確率測度へ収束するか?という問題も未解決である.

一様 K安定性 ks Berman−Boucksom−Jonsson +3
KS

Fujita−Odaka,Blum−Jonsson

��

∃ Kähler-Einstein計量

δ(X) > 1
nv

Zhang
.6eeeeeeeeeeeeeeeeeeeeeeeeeeeee

eeeeeeeeeeeeeeeeeeeeeeeeeeeee

一様 Gibbs安定性 γ(X) > 1

Fujita−Odaka,Berman

hp YYYYYYYYYYYYYYYYYYYYYYYYYYYYY

YYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Berman

KS

2 定スカラー曲率 Kähler計量 (cscK計量)

第 2 章では偏極多様体 (X,L), つまりコンパクト Kähler 多様体 X とその上の豊富な直線束 L → X を考
え, Kähler計量 ω は [ω] = c1(L)を満たすとする. またこの章では, X の非自明な正則自己同型で Lにリフト
できるものは存在しないと仮定する. ω の Ricci形式 Ric ω のトレースを考えることで, スカラー曲率 S(ω)を
定義することができる. 第 1章でコンパクトな Kähler多様体上の Kähler-Einstein計量について概観したが,

より一般化された標準計量の候補として次のような Kähler計量がある.

定義 12. スカラー曲率 S(ω)が定数関数となる Kähler計量を定スカラー曲率 Kähler計量 (constant scalar

curvature Kähler計量, cscK計量)という.

第 1章の状況とは異なり, コホモロジー類 c1(L) = [ω]は X の第一 Chern類 c1(X)に比例しているとは限
らないことに注意せよ. Kähler-Einstein 計量のときと同様に, cscK であるという条件は Ricci形式 Ricω が
Kähler 計量 ω に対して定義される ∂-Laplacian ∆∂ に関して調和形式であるという条件と同値であり, この
意味で cscK計量は Kähler-Einstein計量の自然な一般化となっている. また詳細を述べることはできないが,

cscK計量には藤木や Donaldsonによる無限次元におけるモーメント写像に関するある種の描像があることが
知られている. Ricci形式が c1(X)を代表しているという事実から, cscK計量のスカラー曲率の値は以下の交
点数の比に一致しなければならない:

S =
−nKXLn−1

Ln
.
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cscK計量は関数 ϕと正則局所座標 (z1, ..., zn)を用いて ωϕ = ω +
√
−1∂∂ϕ =

√
−1gϕ,ijdz

i ∧ dzj と書いた
ときに, 次の 4階の非線形偏微分方程式の解となっている:

S(ωϕ) = −gijϕ ∂i∂j log det
(
gϕ,kl

)
kl

= S.

ここで, gijϕ は正定値エルミート行列 (gϕ,kl)kl の逆行列の (i, j) 成分である. Fano 多様体における Kähler-

Einstein計量の時と同様に, cscK計量は任意の Kähler多様体上に存在するとは限らず, 例えば 2次元射影空
間を 1点において爆発した複素曲面は Kähler-Einstein計量はおろか, いかなる Kähler類に対しても cscK計
量を許容しないことが知られている. cscK計量の存在・非存在は Kähler-Einstein計量と同様に, (一様)K安
定性やその亜種と同値であることが予想されている (一般偏極に対する Yau-Tian-Donaldson予想). 本稿を執
筆している数ヵ月前に, この予想に関する大きな進展が得られたことが Boucksom-Jonssonによってアナウン
スされた. 筆者の勉強不足のため立ち入ることはできないが, いずれにしても cscK計量に対してエネルギー汎
関数を用いた変分法的アプローチが重要な役割を果たしており, 次節ではそれについて説明する.

2.1 満渕汎関数と強圧性
コホモロジー類を c1(L)に持つ Kähler計量全体の空間を以下のように書く.

H(L) :=
{
ϕ ∈ C∞(X,R)

∣∣ωϕ = ω +
√
−1∂∂ϕ > 0

}
.

X 上の外微分 dに関して閉じている実 (1,1)-形式 χに対して, χ :=
∫
X

nχ∧ωn−1

V と定義する. まず, Jχ-汎関数
を以下で定義する.

Jχ(ϕ) :=
1

V

n∑
j=1

∫
X

ϕχ ∧ ωj−1 ∧ ωn−j
ϕ −

χ

V (n+ 1)

n∑
j=0

∫
X

ϕωj ∧ ωn−j
ϕ .

Jχ-汎関数は χに関して線形であることに注意する. さらにX 上の確率測度 ν ∈ P (X)に対する相対エントロ
ピー Entν は, 以下のように適切な汎関数の Legendre変換として定義される.

Entν(µ) := sup
a∈C0(X)

(∫
X

aµ− log

∫
X

eaν

)
, µ ∈ P (X).

µ が ν に絶対連続でなければ Entν(µ) = ∞ となる. 絶対連続である場合は良く知られた関係式 Entν(µ) =∫
X
log(dµdν )µに一致するが, この場合でも Entν(µ) = ∞となり得ることに注意せよ. これら 2つの汎関数の性

質については次節でもう少し深く掘り下げる. 満渕汎関数 (満渕の K-energy)を以下で定義する.

M(ϕ) := EntdV
(
V −1ωn

ϕ

)
+ J−Ricω(ϕ)

この定義の右辺は正確には満渕汎関数の Chen-Tian公式と呼ばれるもので, もともと満渕汎関数はDonaldson

汎関数と呼ばれる正則ベクトル束上の Hermite 計量に関する汎関数の類似として満渕氏によって導入された
([27]). 満渕汎関数は cscK計量をその臨界点に持ち, 適切な意味で凸になることが知られている. また先に述
べた pluricomplex energy E は Aubin-Mabuchi energy と呼ばれる H(L)上の汎関数を適切に変換して導入
されるが ([4]), 特に次を満たすことが知られている:

E
(
V −1ωn

ϕ

)
= Jω(ϕ).

したがって, 上記の満渕汎関数は第 1章において先に自由エネルギーから導入した twistされた満渕汎関数と
一致していることがわかる. 先に少し触れたが, 満渕汎関数は次の意味で cscK計量の存在・非存在を特徴づけ
ることが Chen-Chengと Berman-Darvas-Luによって証明された.

定理 13 ([10, 15]). 次の (i)と (ii)は同値である.
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(i) cscK計量 ωϕ ∈ c1(L)が一意的に存在する.

(ii) 満渕汎関数Mは強圧的 (coercive)である. つまり定数 C1, C2 > 0が存在して, 次を満たす.

M(ϕ) ≥ C1Jω(ϕ)− C2, ∀ϕ ∈ H(L).

強圧性の定義の右辺に現れる汎関数 Jω は, やや雑に述べると Kähler計量全体の空間H(L)の固定された点
からの距離関数に整合的であり, 強圧性は汎関数の漸近的な振る舞いに関する性質である. Berman-Darvas-Lu

が (i)から (ii)が導かれることを証明しており, 系として cscK計量が一意に存在すれば偏極多様体 (X,L)は
一様 K 安定であることを証明した ([10]). この後に Chen-Cheng が (ii) から cscK 計量に関する連続法が実
行できることを示し, (i) が得られることを証明している ([15]). 本稿では詳しく述べないが, Chen-Cheng は
cscK計量の存在は全ての測地的 rayに関するスロープの正値性 (測地的安定性と呼ばれる)とも等価であるこ
とを示しており, 実際には測地的 rayに沿った振る舞いを調べ上げれば十分である ([15]). 定理 13の証明のた
めには, 特異 Kähler計量の空間まで拡張された満渕汎関数を考慮した, 多重ポテンシャル論を用いた高度な解
析が必要となる. この結果によって非線形偏微分方程式の解である cscK計量の存在に関する問題は満渕汎関
数の漸近に関する性質を調べるという問題に帰着されたわけだが, そのためには満渕汎関数に含まれる相対エ
ントロピーと Jχ-汎関数の両方の性質を理解することが重要である. 次節では, これらの汎関数が持つ性質に
ついていくつか言及する.

2.2 Jχ-汎関数と Kewei Zhangによる δ-不変量の一般偏極への応用について
本節ではまず満渕汎関数に第 2項として含まれる Jχ-汎関数について触れ, その後に第 1項である相対エン
トロピーの持つ性質や δ-不変量との関係について言及し, それらを応用した Zhangによる仕事について振り返
る. Kähler-Einstein 計量や cscK計量は然るべき汎関数の臨界点として理解することができたが, Jχ-汎関数
の臨界点についても興味深い研究があり, cscK計量との深い関係がある.

定義 14. χが Kählerであるとする. Jχ-汎関数の臨界点 ϕに対応する Kähler計量 ωϕ を Jχ-計量と呼び, そ
れは次の方程式を満たす.

trωϕ
χ = χ.

Jχ-計量は ϕ に関する 2 解の非線形偏微分方程式の解である. χ が Kähler であることから上記の方程式
は楕円型になることが知られている. Kähler 計量 ωϕ が Jχ-計量であるという条件は, χ が Kähler 計量 ωϕ

に対して定義される ∂-Laplacian に関して調和形式であるという条件と同値であり, この意味で Jχ-計量は
cscK計量や Kähler-Einstein計量の類似と見なすことができる. さらに Jχ-計量は, cscK計量における藤木や
Donaldsonによる結果のように, 適切な意味でモーメント写像の描像を持つことが知られている. 先述の満渕
汎関数に関する結果よりも先に, Collins-Székelyhidiによって以下が示されている.

定理 15 ([19]). χが Kählerであると仮定する. Jχ-計量が存在することと, Jχ-汎関数が強圧的, つまり定数
C1, C2 > 0が存在して次が成り立つことは同値である:

Jχ(ϕ) ≥ C1Jω(ϕ)− C2, ∀ϕ ∈ H(L).

本稿では詳細を述べることはできないが, Jχ-計量の存在・非存在に関しては, 代数幾何学における中井-

Moishezonによる豊富判定法の類似と見なせるような特徴付けがあり, Lejmi-Szèkelyhidi や Gao Chen達の
貢献によってある種の部分多様体に関する幾何学的条件と等価であることが証明されている ([14, 26]). 上記
の Collins-Szèkelyhidiによる結果は cscK計量の存在に関する問題について重要な意味を持つ. 相対エントロ
ピーは非負であることに注意すると, 不等式M ≥ J−Ricω が得られる. これは次の系を直ちに導く.

系 16 ([15]). X が canonically polarizedである, つまり c1(X) < 0であると仮定する. このとき, J−Ricω-計
量が存在すれば, cscK計量 ωϕ が存在する.
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Yauの結果によって, X が canonically polarized であれば −Ricω > 0となる ω はいつでも c1(L)の代表
元として見つけることができることに注意せよ. 先述の通り Jχ-計量は 2階の非線形偏微分方程式の解である
が, 複素多様体 X に適切な仮定をおくことで 4階の方程式の解である cscK計量の存在をこのように導くこと
ができる. これだけでも十分興味深い結果に思われるが, 実は相対エントロピーは常に強圧的であることが知
られており, この点を考慮することでさらに強い結果を得ることができる. 古典的には Tianによって導入され
た α-不変量と呼ばれるコンパクト Kähler多様体に関する不変量を用いることで相対エントロピーは強圧的で
あることが知られていたが ([8]), これが (一般偏極において定義された) δ-不変量 δ(L)によって最大限まで洗
練できることが Kewei Zhangによって証明された.

定理 17 ([33]). δ(L)は相対エントロピー EntdV の coercivity thresholdである. つまり任意の ϵ > 0に対し
てある Cϵ > 0が存在して次を満たす.

EntdV
(
V −1ωn

ϕ

)
≥ (δ(L)− ϵ)Jω(ϕ)− Cϵ, ∀ϕ ∈ H(L).

この定理における定数 ϵ, Cϵ について, Jχ-汎関数の χに関する線形性を用いれば不等式

M(ϕ) ≥ J−Ricω+(δ(L)−ϵ)ω(ϕ)− Cϵ (2)

を得る. やや唐突であるが, µ(L) := −KXLn−1

Ln (= n−1S) とし, L の nef thresholds を s(L) := sup{s ∈
R | −KX − sL > 0 }で定義する. 不等式 (2)を利用することで, Zhangは δ-不変量が cscK計量の存在証明に
関して有用であることを示した.

系 18 ([34]). R-直線束KX + δ(L)Lが豊富であり, 不等式 δ(L) > nµ(L)− (n− 1)s(L)が成立すると仮定す
る. このとき, cscK計量 ωϕ が存在する.

系 18は, 仮定の条件から J−Ricω+δ(L)L-計量が存在するというWeinkoveによる結果を利用している ([31]).

X が Fano多様体で L = −KX となる場合を考えると, これらの仮定はどちらも δ(X) > 1という条件に一致
し, 第 1章でも述べたように一様 K安定性及び Kähler-Einstein計量の存在と同値である. この意味で系の 2

条件は Kähler-Einstien計量の場合の自然な拡張とみることができる.

2.3 主要な結果とその応用について
この節で述べる本稿における主要な結果は, Berman が Fanoの場合に証明した分配関数と満渕汎関数の間

の不等式を, 特異性を許しつつ一般偏極の場合に拡張することである. この系として Zhangによる先述の cscK

計量に関する結果の類似を Bermanの研究の観点から得ることができる. 先に述べるが, δk と γk に関する不
等式 ([6, 22])から, 我々の結果は Zhangの結果よりも真に強いものとなることはできない. 一方で我々の結果
は藤田-尾高の δ-不変量を経由しておらず, スレーター行列式から定まる特定の因子の可積分性のみから cscK

計量の存在を判定するという特徴がある.

特異性を持ちうる X 上の非負関数 f ∈ Lp(dV ), p > 1に対して dVf := fdV と定め, 適当な正規化によっ
て dVf は確率測度であると仮定する. 豊富直線束 Lと dVf に対して, 第 1章のときと同様にスレーター行列式
detS(k) と分配関数 ZN,f を定義することができる.

detS(k)(x1, x2, ..., xN ) := det
(
s
(k)
i (xj)

)
ij
∈ H0

(
XN , (kL)⊠N

)
,

ZN,f (−γ) :=

∫
XN

∥∥∥detS(k)
∥∥∥−2γ/k

(dVf )
⊗N .

ここで, (s
(k)
i )Ni=1 は固定された H0(X, kL)の基底であることに注意せよ.

定義 19 ([1]). (X,L, f)に対して, 微視的安定性閾値及びその極限を次で定める.

γk,f (L) = γN,f (L) := sup {γ ≥ 0 | ZN,f (−γ) < +∞} ,
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γf (L) := lim inf
N→∞

γN,f (L).

また, d-閉な実 (1,1)-形式 η に対して, 先述の満渕汎関数を一般化しておく.

定義 20.
Mf,η(ϕ) := EntdVf

(V −1ωn
ϕ) + J−Ricω+η(ϕ) ϕ ∈ H(L).

本稿における主要な結果は以下の不等式である.

定理 21 ([1]). 任意の γ, τ > 0と十分大きい kで f ∈ Lkτ/(kτ−γ(1+τ))(dV )となるものに対し, 次が成り立つ:

− 1

N(1 + τ)
logZN,f (−γ(1 + τ)) + J−Ricω+η+γ′ω(ϕ)

≤ Mf,η(ϕ) +
kτ − γ

k(1 + τ)
log

∫
X

fkτ/(kτ−γ(1+τ))dV +O(1), ∀ϕ ∈ H(L).

ここで, γ′ := γ(1−O(k−1))である.

少し分かりにくいが, この結果は Jω を pluricomplex energy E に読み替えることで, 定理 11の (Lp-関数 f

までを考慮した)一般化になっていることが分かる. これより以下の系が直ちに得られる.

系 22 ([1]). ある γ ∈ (0, γf (L))が存在し, γc1(L) + c1(KX) + [η]が Kähler類かつ J−Ric dV+η+γω が強圧的
であると仮定する. このとき, Mf,η も強圧的となる.

この系は, 服部によって導入された special K-stability の不変量 γf に対する解析的な類似と見なすことが
できる ([24]). f = 1, η = 0という自明な場合に, Zhangによる定理と同様にWeinkoveによる Jχ-計量に関す
る結果 ([31])を用いることで次の系を得る.

系 23 ([1]). R-直線束 KX + γ(L)Lが豊富であり, 不等式 γ(L) > nµ(L)− (n− 1)s(L)が成立すると仮定す
る. このとき, cscK計量 ωϕ が存在する.

ここで f = 1に対して γ(L) = γ1(L)と書いた. 本節の冒頭でも少し触れたが, δ(L) ≥ γ(L)であることが知
られており ([22, 6]), この系自体は Zhangの結果を経由することで証明することができる. 技術的ではあるが
Bermanによる定理 11と異なり, 定理 21で τ というパラメーターを導入することで, 因子に沿って錐的特異性
(cone singularities) を許す cscK 計量についても扱えるようになった. (定義等については [35] を参照してい
ただけば幸いである.) D を滑らかな因子とし, パラメーター b ∈ (0, 1]に対して先程定義した µ(L)と s(L)の
定義におけるKX を, 全て対数的標準束KX +(1− b)Dに置き換えたものをそれぞれ µ(1−b)D(L), s(1−b)D(L)

と書く. また, D の定義切断 σD に対して (滑らかなエルミート計量を固定し) f(1−b)D := |σD|2(1−b) と書く.

系 24 ([1]). R-直線束 KX + (1 − b)D + γf(1−b)D
(L)L が豊富であり, 不等式 γf(1−b)D

(L) > nµ(1−b)D(L) −
(n− 1)s(1−b)D(L)が成立すると仮定する. このとき, D に沿って角度 2πβ の錐的特異点を持つ cscK計量 ωϕ

が存在する.

この系では, η として第一 Chern類 c1(D)の滑らかな代表元を選んでいる. 錐的特異点を持つ cscK計量の
存在は Kai Zhengによって得られた対数的満渕汎関数の強圧性による特徴づけによって保証される ([35]). さ
らに簡単な議論によって, 任意の偏極多様体における次数が非常に大きい滑らかな因子に対して以下の結果が
得られる.

系 25 ([1]). (X,L)と b ∈ (0, 1]にのみ依存する m0 ∈ Z>0 で, 次を満たすものが存在する: 任意の m ≥ m0

と滑らかな因子 D ∈ |mL|に対して, D に沿って角度 2πβ の錐的特異点を持つ cscK計量 ωϕ が存在する.

α-不変量を用いた類似の結果が既に知られている ([2]). いずれの場合においても Zhangの結果 ([35])から
導くことができるが, 我々のアプローチでは cscK計量の存在判定には (レベル k 毎に)スレーター行列式から
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定まる因子の可積分しか考えておらず, δ-不変量には触れていない (基底型因子を見ていない)という特徴があ
る. ただし次節で見るように, 不変量 γ(L)の計算は非常に難しく, 計算されている具体的な例はほぼ見つかっ
ていないという現状がある.

定理 21の証明の大きな流れは Bermanによる先行研究 ([6])と同様であるが, 一般偏極の場合では満渕汎関
数を確率測度の空間上の汎関数である自由エネルギー Fβ と同一視することができないため, Jχ-汎関数に読み
替えて議論を行う必要がある. また, 関数 f ∈ Lp(dV )を分配関数 ZN から分離するためにパラメーター τ > 0

を導入し, Hölder不等式を適切に用いる必要がある. また Bermanの証明では, 複素関数論における重要な結
果である Berndtsson の順像層に関する正値性の結果 ([11])が用いられるが, 我々の場合でも同様に重要な役
割を果たす. (ただし, τ を導入したことによって Bermanの証明よりも少し簡略化されている.)

一様 K安定性 ks Berman−Darvas−Lu

KS

Hattori,Weinkove,GaoChen

∃ cscK計量

KX + δ(L)L > 0, δ(L) > nµ(L)− (n− 1)s(L)

Zhang

.6dddddddddddddddddddddddddddddddd

dddddddddddddddddddddddddddddddd

KX + γ(L)L > 0, γ(L) > nµ(L)− (n− 1)s(L)

Fujita−Odaka,Berman

hp YYYYYYYYYYYYYYYYYYYYYYYYYYYY

YYYYYYYYYYYYYYYYYYYYYYYYYYYY

A

KS

2.4 今後の問題について
最後に, 本稿の研究に関わる問題で未解決のものをいくつか挙げる. まず第 1章でも少し触れたように, 以下
の問題は未解決である.

問題 26 ([5, 6]). X を Fano 多様体とする. このとき, X が Kähler-Einstein 計量を持つことと, X が一
様 Gibbs 安定であることは同値か? さらにこの場合, empirical measure δN は N → ∞ としたときに
Kähler-Einstein計量から定まる確率測度に適切な意味で収束するか?

また, 微視的安定性閾値 γk(X)やその極限 γ(X)を具体的な Fano多様体に対して計算することは現状非常
に難しいように思われる. (ただし, γk(X)及び γ(X)は先に少し述べた α-不変量以上になることが知られてい
る.) 現時点で γ(X)が計算されている具体例は, 筆者が知る範囲では藤田氏による P1 の例のみしか知られて
おらず, この場合でも計算は容易ではない ([21]). この場合では任意の k に対して γk(P1) = 2k

2k+1 となること
が計算されており, 極限をとれば γ(P1) = 1である. 一方で [12, 29]により δk(P1) = δ(P1) = 1であることが
知られていて, 第 1章で述べた藤田-尾高による定理 10の不等式の等号は有限の k では一般には成立しないこ
とが分かる. 極限をとった時の問題として,

問題 27 ([5, 6, 1]). 次の等式は成立するか?

δ(L) = γ(L).

L = −KX の場合にこれが正しいとすると, Kähler-Einstein計量の存在及び一様 K安定性は一様 Gibbs安
定性と同値であることが証明されたことになる. ただし, empirical measure δN の収束に関してはさらに議論
が必要なように思われる.

さらに X が canonically polarizedまたは Fanoである場合に, Kähler-Einstein計量を一般化した coupled

Kähler-Einstein計量と呼ばれるものが Hultgren-Witt Nyströmによって導入されている ([25]). 現在進行中
ではあるが, この場合に Berman が示した大偏差原理の結果や Gibbs 安定性に関する結果を自然に拡張する
ことができるか?という問題は興味深い問題だと考えている. また, cscK計量に対しても初期計量などの取り
方に依存しない, ある種の canonicalなアプローチを得ることができるか?という問いも今後の課題だと考えて
いる.

11



[1] T. Aoi, Microscopic stability thresholds and constant scalar curvature Kähler metrics, arXiv:2410.22090.

[2] T. Aoi, Y.Hashimoto and K.Zheng, On uniform log K-stability for constant scalar curvature Kähler cone

metrics, Comm. Anal. Geom. 33(3), 701–767 (2025).

[3] T, Aubin, Équations du type Monge-Ampère sur les variétés kählériennes compactes, C. R. Acad. Sci. Paris

Ser., A 283, 119–121 (1976).

[4] R. J. Berman, A thermodynamical formalism for Monge-Ampère equations, Moser-Trudinger inequalities

and Kähler-Einstein metrics, Adv. Math. 248, 1254–1297 (2013).

[5] R. J. Berman, An invitation to Kähler-Einstein metrics and random point processes, Surveys in differential

geometry. Differential geometry, Calabi-Yau theory, and general relativity. Surv. Differ. Geom. 23, 35–87

(2018).

[6] R. J. Berman, The probabilistic vs the quantization approach to Kähler–Einstein geometry, Math. Ann. 388,

4383–4404 (2024).

[7] R. J. Berman, Kähler-Einstein metrics, canonical random point processes and birational geometry, Algebraic

Geometry Salt Lake City 2015. In: Proceedings of Symposia in Pure Mathematics. Vol.97.1. 29–73 (2018).

[8] R. J. Berman, S. Boucksom, P. Eyssidieux, V.Guedj and A. Zeriahi, Kähler-Einstein metrics and the Kähler-

Ricci flow on log Fano varieties, J. Reine Angew. Math. 751, 27–89 (2019).

[9] R. J. Berman, S. Boucksom and M. Jonsson, A variational approach to the Yau–Tian–Donaldson conjecture,

J. Amer. Math. Soc. 34, no. 3, 605–652 (2021).

[10] R. J. Berman, T. Darvas and C. H. Lu, Regularity of weak minimizers of the K-energy and applications to
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[25] J. Hultgren and D. Witt Nyströlm, Coupled Kähler-Einsten metrics, Int. Math. Res. Not., 298 (2018).
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